On Characterizations of Molecular Descriptors and Entropies for Oxytocin and Cholic Acid Chemical Networks
DOI:
https://doi.org/10.11113/mjfas.v21n5.4423Keywords:
Chemical Networking; Oxytocin; Cholic acid; M-polynomials; Molecular descriptors; EntropiesAbstract
Molecular descriptors are numerical depictions of molecular structures that convey different structural or physicochemical attributes. To link molecular structures with their biological activities or other qualities of interest, they are commonly utilized in cheminformatics, computational chemistry, and QSAR (Quantitative Structure-Activity Relationship) investigations. Regarding entropies for chemical networks, it appears that you are talking to entropy in the context of chemical reactions or chemical systems. Entropy is a thermodynamic term that refers to the disorder or unpredictability of a system. Entropy changes in chemical systems can occur during chemical reactions, phase transitions, or mixing. In this article, we choose two families of chemical networks, namely Oxytocin ( ) and Cholic Acid ( . The bound partitions of these proposed networks concerning the valency of each atom are investigated, and then, by using the partition, we have computed the M-Polynomials. By means of M-polynomials, various molecular descriptors and entropies are established for proposed chemical structures. Furthermore, a numerical comparison among the investigated molecular descriptors and entropies for the Oxytocin and Cholic Acid chemical structures is observed.
References
Gonzalez-Diaz, H., Vilar, S., Santana, L., & Uriarte, E. (2007). Medicinal chemistry and bioinformatics: Current trends in drug discovery with network topological indices. Current Topics in Medicinal Chemistry, 7(10), 1015–1029.
Estrada, E., & Uriarte, E. (2001). Recent advances on the role of topological indices in drug discovery research. Current Medicinal Chemistry, 8(14), 1573–1588.
Gao, W., Wang, W., & Farahani, M. R. (2016). Topological indices study of molecular structure in anticancer drugs. Journal of Chemistry, 2016, 3216327.
Gao, W., Farahani, M. R., & Shi, L. (2016). Forgotten topological index of some drug structures. Acta Medica Mediterranea, 32, 579–585.
Devillers, J., & Balaban, A. T. (2000). Topological indices and related descriptors in QSAR and QSPR. CRC Press.
Gutman, I. (1990). A property of the simple topological index. MATCH Communications in Mathematical and Computer Chemistry, 25, 131–140.
Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17–20.
Gao, W., Wang, Y., Basavanagoud, B., & Jamil, M. K. (2017). Characteristics studies of molecular structures in drugs. Saudi Pharmaceutical Journal, 25(4), 580–586
Doslic, T., Reti, T., & Ali, A. (2021). On the structure of graphs with integer Sombor indices. Discrete Letters, 7, 1–4.
Gutman, I. (2021). Geometric approach to degree-based topological indices: Sombor indices. MATCH Communications in Mathematical and Computer Chemistry, 86, 11–16.
Ediz, S., Cifti, I., Cancan, M., & Farahani, M. R. (2021). On k-total distance degrees and k-total Wiener polarity index. Journal of Information and Optimization Sciences, 42(7), 1469–1477.
Matejic, M., Zogic, E., Milovanovic, E., & Milovanovic, I. (2020). A note on the Laplacian resolvent energy of graphs. Asian-European Journal of Mathematics, 13, 2050119.
Gutman, I., & Trinajstić, N. (1972). Graph theory and molecular orbitals: Total π-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4), 535–538.
Randić, M. (1975). On characterization of molecular branching. Journal of the American Chemical Society, 97(23), 6609–6615.
Estrada, E. (2000). Characterization of 3D molecular structure. Chemical Physics Letters, 319(5–6), 713–718.
Hosoya, H. (1971). Topological index: A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan, 44(9), 2332–2339.
Estrada, E., & Bonchev, D. (2013). Chemical graph theory. Chapman and Hall/CRC.
Gutman, I., Ruscic, B., Trinajstic, N., & Wilson, C. F. (1975). Graph theory and molecular orbitals. XII. Acyclic polyenes. Journal of Chemical Physics, 62(8), 3399–3405.
Shirdel, G. H., Rezapour, H., & Sayadi, A. M. (2013). The hyper Zagreb index of graph operations. Iranian Journal of Mathematical Chemistry, 4(2), 213–220.
Togan, M., Yurttas, A., Cevik, A. S., & Cangul, I. N. (2019). Effect of edge deletion and addition on Zagreb indices of graphs. In Mathematical Methods in Engineering (pp. 191–201). Springer.
Togan, M., Yurttas, A., Cevik, A. S., & Cangul, I. N. (2019). Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs. TWMS Journal of Applied and Engineering Mathematics, 9(3), 404–412.
Gutman, I., Togan, M., Yurttas, A., Cevik, A. S., & Cangul, I. N. (2018). Inverse problem for sigma index. MATCH Communications in Mathematical and Computer Chemistry, 79(3), 491–508.
Ghorbani, M., Zangi, S., & Amraei, N. (2021). New results on symmetric division deg index. Journal of Applied Mathematics and Computing, 65(1), 161–176.
Richardson, C. W., Foster, G. R., & Wright, D. A. (1983). Estimation of erosion index from daily rainfall amount. Transactions of the ASAE, 26(1), 153–156.
Das, K. C., Gutman, I., & Furtula, B. (2011). On atom-bond connectivity index. Chemical Physics Letters, 511(4–6), 452–454.
Dalf, C. (2019). On the Randić index of graphs. Discrete Mathematics, 342(10), 2792–2796.
Jahanbani, A. (2019). Albertson energy and Albertson–Estrada index of graphs. Journal of Linear Topological Algebra, 8(1), 1–24.
Klavžar, S., Rajapakse, A., & Gutman, I. (1996). The Szeged and the Wiener index of graphs. Applied Mathematics Letters, 9(5), 45–49.
Xu, K., & Das, K. C. (2011). On Harary index of graphs. Discrete Applied Mathematics, 159(17), 1631–1640.
Mukwembi, S. (2012). On the upper bound of Gutman index of graphs. MATCH Communications in Mathematical and Computer Chemistry, 68, 343–356.
Havare, O. (2021). Topological indices and QSPR modeling of some novel drugs used in cancer treatment. International Journal of Quantum Chemistry, 121(12), e26813.
Vukicevic, D. (2010). Bond additive modeling 2: Mathematical properties of max–min Zagreb index. Croatica Chemica Acta, 83(3), 261–273.
Estrada, E., Torres, L., Rodriguez, L., & Gutman, I. (1998). An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian Journal of Chemistry, 37, 849–855.
Rajasekharaiah, G. V., & Murthy, U. P. (2020). Hyper-Zagreb indices of graphs and its applications. Journal of Algebra Combinatorics Discrete Structures and Applications, 8(2), 9–22.
Vukicevic, D., & Gasparov, M. (2010). Bond additive modeling 1: Adriatic indices. Croatica Chemica Acta, 83(3), 243–260.
Havare, O. (2019). Determination of some thermodynamic properties of monocarboxylic acids using multiple linear regression. BEU Journal of Science, 8(2), 466–471.
Lokesha, V., Shruti, R., & Cevik, A. (2018). On certain topological indices of nanostructures using Q(G) and R(G) operators. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 178–187.
Reti, T., Sharafdini, R., Dregelyi-Kiss, A., & Haghbin, H. (2018). Graph irregularity indices used as molecular descriptors in QSPR studies. MATCH Communications in Mathematical and Computer Chemistry, 79(3), 509–524.
Wiener, H. (2018). Relation of the physical properties of the isomeric alkanes to molecular structure: Surface tension, specific dispersion, and critical solution temperature in aniline. Journal of Physical Chemistry, 52(5), 1082–1089.
Dobrynin, A. A., Entringer, R., & Gutman, I. (2001). Wiener index of trees: Theory and applications. Acta Applicandae Mathematicae, 66(3), 211–249.
Castro, E. A., & Tueros, M. (2001). QSPR study of boiling points of alkyl alcohols via improved polynomial relationships. Philippine Journal of Science, 130(2), 111–118.
Rahul, M. P., Clement, J., Junias, J. S., Arockiaraj, M., & Balasubramanian, K. (2022). Degree-based entropies of graphene, graphyne and graphdiyne using Shannon’s approach. Journal of Molecular Structure, 1260, 132797.
Brckler, F. M., Dolic, T., Graovac, A., & Gutman, I. (2011). On a class of distance-based molecular structure descriptors. Chemical Physics Letters, 503(4–6), 336–338.
Ekimov, E. A., Sidorov, V. A., Bauer, E. D., Mel’nik, N. N., Curro, N. J., Thompson, J. D., & Stishov, S. M. (2004). Superconductivity in diamond. Nature, 428(6982), 542–545.
Afzal, F., Hussain, S., Afzal, D., & Razaq, S. (2020). Some new degree-based topological indices via M-polynomial. Journal of Information and Optimization Sciences, 41(4), 1061–1076.ogical indices via M-polynomial. Journal of Information and Optimization Sciences 41, no. 4 (2020): 1061-1076
Gao, W., Iqbal, Z., Ishaq, M., Sarfraz, R., Aamir, M., & Aslam, A. (2018). On eccentricity-based topological indices study of a class of porphyrin-cored dendrimers. Biomolecules, 8(3), 71.
Gao, W., Wu, H., Siddiqui, M. K., & Baig, A. Q. (2018). Study of biological networks using graph theory. Saudi Journal of Biological Sciences, 25(6), 1212–1219.
Husin, M. N., Khan, A. R., Awan, N. U. H., Campena, F. J. H., Tchier, F., & Hussain, S. (2024). Multicriteria decision-making attributes and estimation of physicochemical properties of kidney cancer drugs via topological descriptors. PLoS ONE, 19(6), e0302276.
Yang, H., & Zhang, X. (2018). The independent domination numbers of strong product of two cycles. Journal of Discrete Mathematical Sciences and Cryptography, 21(7–8), 1495–1507.
Ivanciuc, O. (2013). Chemical graphs, molecular matrices, and topological indices in chemoinformatics and quantitative structure–activity relationships. Current Computer-Aided Drug Design, 9(2), 153–163.
Kang, S. M., Zahid, M. A., Virk, A. U. R., Nazeer, W., & Gao, W. (2018). Calculating the degree-based topological indices of dendrimers. Open Chemistry, 16(1), 681–688.
Deng, H., Yang, J., & Xia, F. (2011). A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Computers and Mathematics with Applications, 61(10), 3017–3023.
Li, X., & Shi, Y. (2008). A survey on the Randić index. MATCH Communications in Mathematical and Computer Chemistry, 59(1), 127–156.
Ranjini, P. S., Lokesha, V., & Usha, A. (2013). Relation between phenylene and hexagonal squeeze using harmonic index. International Journal of Graph Theory, 1(4), 116–121.
Chen, Z., Dehmer, M., & Shi, Y. (2014). A note on distance-based graph entropies. Entropy, 16(10), 5416–5427.
Manzoor, S., Siddiqui, M. K., & Ahmad, S. (2020). On entropy measures of molecular graphs using topological indices. Arabian Journal of Chemistry, 13(8), 6285–6298.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhammad Shoaib, Ghulam Mustafa, Shahbaz Ali

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














