An Embedded System Design for Multi-lead Electrocardiogram On-Device Acquisition and Processing
DOI:
https://doi.org/10.11113/mjfas.v21n5.4332Keywords:
Electrocardiogram, microcontroller, low-pass filter, high-pass filter, R-peak detection.Abstract
Cardiovascular disease (CD) is the leading cause of death in the world. Electrocardiogram (ECG) analysis is an effective method to diagnose CD. In this study, we introduced a microcontroller-based embedded system that allows the collection and processing of ECG signals directly on the device. By integrating low-pass filters (LPFs) and high-pass filters (HPFs), the system can effectively eliminate ultra-low frequency noise, power line noise, and unwanted high-frequency components, thereby improving the fidelity of the signal. R peak detection algorithms (Pan-Tompkins, Hilbert Transform, and Englese & Zeelenberg) have been applied to the acquired ECG of 10 volunteers aged 21–28 years. The results show that these algorithms achieved accuracy of over 99.5%. This study not only proves the ability to improve the reliability of direct ECG collection and analysis based on microcontrollers but also lays the foundation for the development of portable cardiovascular diagnostic devices, supporting early detection and more effective and accessible healthcare.
References
Raheja, N. & Manocha, A. K. (2023). An IoT enabled secured clinical health care framework for diagnosis of heart diseases. Biomedical Signal Processing and Control, 80.
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Anderson, C. A. M., Arora, P., Avery, C. L., Smith, C. M. B., Beaton, A. Z., Boehme, A. K., Buxton, A. E., Mensah, Y. C., Elkind, M. S. V., Evenson, K. R., Nliam, C. E., Fugar, S., Generoso, G., Heard, D. G., Hiremath, S., Ho, J. E., Kalani, R., Kazi, D. S., Ko, D., Levine, D. A., Liu, J., Ma, J., Magnani, J. W., Michos, E. D., Mussolino, M. E., Navaneethan, S. D., Parikh, N. I., Poudel, R., Hanna, M. R., Wang, N. Y., Wong, N. D., Wong, S. S., Yaffe, K. & Martin, S. S. (2023). Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation, 147(8), e93–e621.
Faruk, N., Abdulkarim, A., Emmanuel, I., Folawiyo, Y. Y., Adewole, K. S., Mojeed, H. A., Oloyede, A. A., Olawoyin, L. A., Sikiru, I. A., Nehemiah, M., Gital, A. Y., Chiroma, H., Ogunmodede. J. A., Almutairi, M. & Katibi, I. A. (2021). A comprehensive survey on low-cost ECG acquisition systems: Advances on design specifications, challenges and future direction. Biocybernetics and Biomedical Engineering, 41(2), 474–502.
Lv, W. & Guo, J. (2021). Real-time ECG signal acquisition and monitoring for sports competition process oriented to the Internet of Things. Measurement, 169.
Gupta, V., Mittal, M., Mittal, V. & Saxena, N. K. (2021). BP Signal Analysis Using Emerging Techniques and its Validation Using ECG Signal. Sensing and Imaging, 22(1), 25.
Singh, A. K. & Krishnan, S. (2023). ECG signal feature extraction trends in methods and applications. BioMedical Engineering OnLine, 22(22).
Morello, R., Ruffa, F., Jablonski, I., Fabbiano, L. & Capua, D. C. (2022). An IoT based ECG system to diagnose cardiac pathologies for healthcare applications in smart cities. Measurement, 190.
Bui, N. T. & Byun, G. S. (2021). The comparison features of ecg signal with different sampling frequencies and filter methods for real-time measurement. Symmetry, 13(8).
Pereira, T. M. C., Conceição, R. C., Sencadas, V. & Sebastião, R. (2023). Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods. Sensors, 23(3), 1–31.
Rizwan, A., Priyanga, P., Abualsauod, E. H., Zafrullah, S. N., Serbaya, S. H. & Halifa, A. (2022). A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm. Computational Intelligence and Neuroscience, 2022(1).
Guerrero, F. N., Oliva, M. J. & Spinelli, E. M. (2023). Real-time noise reduction through independent channel averaging for real-time biomedical signal acquisition. XI Southern Programmable Logic Conference Proceedings.
Chu, H., Zhen, W., Wang, H. & Wan, Y. (2023). ECG Signal Acquisition and Processing System. Journal of Physics:Conference Series, 2644(1).
Ding, J., Tang, Y., Chang, R., Li, Y., Zhang, L. & Yan, F. (2023). Reduction in the Motion Artifacts in Noncontact ECG Measurements Using a Novel Designed Electrode Structure. Sensors, 23(2).
Lazaretti, G. S., Teixeira, J. P., Kuhn, E. V. & Borghi, P. H. (2022). Android-based ECG Monitoring System for Atrial Fibrillation Detection using a BITalino® ECG Sensor. In Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2022), 1, 177–184.
Jeon, T., Kim, B., Jeon, M. & Lee, B. G. (2014). Implementation of a portable device for real-time ECG signal analysis. BioMedical Engineering OnLine, 13(1), 1–13.
Nguyen, T. N., Duong, T. T., Omer, H. & Sulieman, D. A. (2023). The design and construction of a 12-channel electrocardiogram device developed on an ADS1293 chip platform. Electronics, 12(11).
Jhang, Y. S., Wang, S. T., Sheu, M. H., Wang, S. H. & Lai, S. C. (2022). Integration design of portable ECG Signal acquisition with deep-learning based electrode motion artifact removal on an embedded system. IEEE Access, 10, 57555–57564.
Su S., Zhu, Z., Wan, S., Sheng, F., Xiong, T., Shen, S., Hou, Y., Liu, C., Li, Y., Sun, X. & Huang, J. (2023). An ECG signal acquisition and analysis system based on machine learning with model fusion. sensors, 23(17).
Samsudin, N. N., Isaak, S. & Paraman, N. (2022). Implementation of optimized low pass filter for ECG filtering using Verilog. Journal of Physics: Conference Series, 2312(1).
Petráš, I. (2022). Novel generalized low-pass filter with adjustable parameters of exponential-type forgetting and its application to ECG signal. Sensors, 22(22),.
Abidin, A. Z., Septian, B., Arkan, F. & Ridho, M. F. (2024). Noise suppression of ECG signal using optimized digital butterworth bandpass filter. The Indonesian Journal of Computer Science, 13(4), 5254–5264.
Rajendiran, D. K. J., Babu, C. G., Priyadharsini, K. & Karthi, S. P. (2024). Certain investigation on hybrid neural network method for classification of ECG signal with the suitable a FIR filter. Scientific reports, 14(15087).
Mishra A., Dharahas, G., Gite, S., Kotecha, K., Koundal, D., Zaguia, A., Kaur, M. & Lee, H. N. (2022). ECG data analysis with denoising approach and customized CNNs. Sensors, 22(5).
[Jawahar, S., Harish, G., Harsha, V. S., Navialagan, P., & Preethi, D. (2023). Performance analysis of notch filter in ECG signal noise reduction. International Research Journal on Advanced Science Hub, 5(4), 137–141.
Amini S. & Tazehkand, B. M. (2022). Design of feedback-structured IIR notch filter with transient suppression using gain variation. Biomedical Signal Processing and Control, 71(PA).
Hesar H. D. & Hesar, A. D. (2025). Adaptive dual augmented extended Kalman filtering of ECG signals. Measurement, 239.
Karjadi, M., Salahuddin, N. S., Wibowo, E. P. & Afandi, H. (2016). Digital filter design of infinite impulse response (IIR) Infrasound to detect fetal heart rate. International Journal of Engineering Research & Science, 2(3), 25-38.
Pan J. & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32(3), 230–236.
Utomo, T. P., Nuryani, N. & Darmanto. (2017). QRS peak detection for heart rate monitoring on Android smartphone. International Conference on Science and Applied Science, 909(1).
Christov, I. I. (2004). Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine, 3(28), 1–9.
Lewandowski, J., Arochena, H. E., Naguib, R. N. G. & Chao, K. M. (2012). A simple real-time QRS detection algorithm utilizing curve-length concept with combined adaptive threshold for electrocardiogram signal classification. TENCON 2012 IEEE Region 10 Conference, 1–6.
Madeiro, J. P. V., Cortez, P. C., Marques, J. A. L., Seisdedos, C. R. V. & Sobrinho, C. R. M. R. (2012) An innovative approach of QRS segmentation based on first-derivative, Hilbert and Wavelet Transforms. Medical Engineering & Physics, 34(9), 1236–1246.
Chen A., Zhang, Y., Zhang, M., Liu, W., Chang, S., Wang, H., He, J. & Huang, Q. (2020). A real time QRS detection algorithm based on ET and PD controlled threshold strategy. Sensors, 20(14), 1–15.
Thurner, T., Hintermueller, C., Blessberger, H. & Steinwender, C. (2021). Complex-Pan-Tompkins-Wavelets: Cross-channel ECG beat detection and delineation. Biomedical Signal Processing and Control, 66.
Lourenço, A., Silva, H., Leite, P., Lourenço, R. & Fred, A. (2012). Real time electrocardiogram segmentation for finger based ECG biometrics. International Conference on Bio-inspired Systems and Signal Processing, 1, 49–54.
Thomas, A. (2021). Enclaves in real-time operating systems (Master’s thesis, University of California). Electrical Engineering and Computer Sciences.
Huang M. & Xiang, S. (2022). Image interpolation by direct cross downsampling. Digital Signal Processing, 132.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Thanh-Luan Tran, Tien-Thanh Nguyen, Quy-Hung Nguyen, Vy-Khang Tran, Chi-Ngon Nguyen, Van-Khanh Nguyen

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














