Neutrosophic Type Reduction for Type-2 Neutrosophic B-spline Curve Mode
DOI:
https://doi.org/10.11113/mjfas.v21n5.4313Keywords:
Type-2 Neutrosophic Set Theory, Neutrosophic Type Reduction, B-spline Curve Model, Approximation Method, Enhanced Liu and Karnik Mendel AlgorithmAbstract
The neutrosophic type reduction process converts type-2 neutrosophic values into their type-1 counterparts. Type-2 neutrosophic set (T2NS) theory is a comprehensive framework that encompasses intuitionistic fuzzy sets (IFS), fuzzy sets (FS), type-2 fuzzy sets (T2FS), and neutrosophic sets (NS). Within this framework, a T2NS employs six membership functions—truth, indeterminacy, and falsity- each represented with both primary and secondary values. The reduction process simplifies these memberships into a type-1 neutrosophic set (NS), which consists solely of the primary truth, indeterminacy, and falsity memberships. However, generating a geometric representation, such as a B-spline curve, presents challenges when using the T2NS theory due to the complexity involved in the reduction process. Therefore, this study introduces an enhanced type reduction technique inspired by the T2FS framework. The method employs the Liu and Karnik-Mendel algorithms to transform type-2 neutrosophic B-spline curves (T2NBsCs) into type-1 neutrosophic B-spline curves (T1NBsCs) for approximation. To construct the model, the triangular T2NS concept is utilized to define a type-2 neutrosophic control point relationship (T2NCPR), which is subsequently integrated with the B-spline basis functions. This integration produces T2NBsCs through an approximation process. The study then presents several numerical examples of T2NBsCs and illustrates the resulting T1NBsCs models along with the corresponding algorithm.”
References
Smarandache, F. (1998). A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic. American Research Press.
Smarandache, F. (2005). Neutrosophic set: A generalization of the intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics, 24(3), 287–297.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
Mendel, J., & John, R. (2002). Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 10(2), 117–127.
Azar, T. A. (2012). Overview of type-2 fuzzy logic systems. International Journal of Fuzzy System Applications, 2(4), 1–28.
Someyama, N. (2023). Review of type-1 and type-2 fuzzy numbers. IntechOpen.
Abdel-Basset, M., Saleh, M., Gamal, A., & Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438–452.
Bakali, A., Broumi, S., Nagarajan, D., Talea, M., Lathamaheswari, M., & Kavikumar, J. (2021). Graphical representation of type-2 neutrosophic sets. Neutrosophic Sets and Systems, 42, 28–38.
Wang, H., Smarandache, F., Zhang, Y.-Q., & Sunderraman, R. (2005). Interval neutrosophic sets and logic: Theory and applications in computing.
Yeh, C.-Y., Jeng, W.-H., & Lee, S.-J. (2011). An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 19(2), 227–240.
TTas, F., & Topal, S. (2017). Bezier curve modeling for neutrosophic data problem. Neutrosophic Sets and Systems. University of New Mexico.
Topal, S., & Tas, F. (2018). Bézier surface modeling for neutrosophic data problems. Neutrosophic Sets and Systems, 19, 19–23.
Rosli, S. N. I., & Zulkifly, M. I. E. (2023). 3-Dimensional quartic Bézier curve approximation model by using neutrosophic approach. Neutrosophic Systems with Applications, 11, 11–21.
Rosli, S. N. I., & Zulkifly, M. I. E. (2023). Neutrosophic bicubic Bezier surface approximation model for uncertainty data. MATEMATIKA, 39(3), 281–291.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Neutrosophic Bézier curve model for uncertainty problem using approximation approach. ITM Web of Conferences, 67.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Bézier curve interpolation model for complex data by using neutrosophic approach. EDUCATUM Journal of Science, Mathematics, and Technology, 12(1), 1–9.
Rosli, S. N. I., & Zulkifly, M. I. E. (2023). A neutrosophic approach for B-spline curve by using interpolation method. Neutrosophic Systems with Applications, 9(29), 29–40.
Rosli, S. N. I., & Zulkifly, M. I. E. (2023). Neutrosophic bicubic B-spline surface interpolation model for uncertainty data. Neutrosophic Systems with Applications, 10, 25–34.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Neutrosophic B-spline surface approximation model for 3-dimensional data collection. Neutrosophic Sets and Systems, 63, 95–104.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Deneutrosophication of neutrosophic Bézier surface approximation model. Neutrosophic Sets and Systems, 72, 341–356.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Deneutrosophication of neutrosophic B-spline surface approximation model. AIP Conference Proceedings, 3244(1).
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Neutrosophic B-spline surface approximation model for 3-dimensional data collection. Neutrosophic Sets and Systems, 63, 95–104.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Modeling of an interval type-2 neutrosophic Bézier surface by using interpolation method. ASEAN International Sandbox Conference, 3.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Visualization of 3-dimensional cubic B-spline surface approximation model by using interval type-2 neutrosophic set theory. 3rd International Conference on Frontiers in Academic Research, 372–380.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Approximation of interval type-2 neutrosophic Bezier surface model for uncertainty data. International Journal of Computational Thinking and Data Science, 3(1), 20–31.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Interval neutrosophic cubic Bézier curve approximation model for complex data. Malaysian Journal of Fundamental and Applied Sciences, 20(2), 336–346. https://doi.org/10.11113/mjfas.v20n2.3240.
Rosli, S. N. I., & Zulkifly, M. I. E. (2024). Fuzzification and defuzzification of intuitionistic fuzzy B-spline curve approximation model for visualization of complex uncertainty data. Proceedings of the 5th International Conference on Artificial Intelligence and Data Sciences (AiDAS), 498–503.
Karaaslan, F., & Hunu, F. (2020). Type-2 single-valued neutrosophic sets and their applications in multicriteria group decision making based on TOPSIS method. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-020-02205-7
Rosli, S. N. I., & Zulkifly, M. I. E. (2025). Properties and structure of type-2 neutrosophic control point relation. Neutrosophic Sets and Systems, 90, 925–939. https://fs.unm.edu/nss8/index.php/111/article/view/6917.
Rosli, S. N. I., Zulkifly, M. I. E., & Said, B. (2025). Implementing 3D modeling: Interpolated B-spline surfaces enhanced with interval type-2 neutrosophic set theory. Warisan Journal of Mathematical Sciences and Engineering, 1(1), 12–25. https://doi.org/10.37934/wjmse.1.1.1225.
Rosli, S. N. I., & Zulkifly, M. I. E. (2025). Neutrosophication of neutrosophic B-spline curve approximation model. Neutrosophic Sets and Systems, 87, 434–447. https://fs.unm.edu/nss8/index.php/111/article/view/6560.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 SITI NUR IDARA ROSLI, Dr. Mohammad Izat Emir

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














