Effect of iridium loading on the formation of protonic acid sites over Ir/Pt-HZSM5
DOI:
https://doi.org/10.11113/mjfas.v9n1.75Keywords:
Ir/Pt-HZSM5, Hydrogen, Protonic acid sites, FTIR adsorbed 2, 6-lutidine, n-pentane isomerization,Abstract
The Ir/Pt-HZSM5 with different iridium loading (0.3-1.0 wt%) was prepared by impregnation of iridium on Pt-HZSM5. The acidic properties of Ir/Pt-HZSM5 were studied by FTIR spectroscopy, while the activity of the catalysts was tested for n-pentane isomerization in a microcatalytic pulse reactor.
The IR results of adsorbed 2,6-lutidine showed that all catalysts possessed strong Brönsted and Lewis acid sites in the outgassing at 473 K and below.
When Ir/Pt-HZSM5 was heated in hydrogen, protonic acid sites were formed with concomitant decrease of Lewis acid sites. An increase in iridium
loading continuously decreased the Lewis and Brönsted acid sites and inhibited the formation of protonic acid sites induced by hydrogen. The formation
of protonic acid sites induced by hydrogen was also confirmed by the formation of electron detected by ESR spectroscopy. Additionally for n-pentane
isomerization, an increase in iridium loading decreased the yield of isopentane due to the inhibition in the formation of protonic acid sites via hydrogen
spillover phenomenon.
References
K. Fujimoto, K. Maeda and K. Aimoto, Appl. Catal. A: Gen., 91
(1992), 81-86.
P. Cañizares, A. de Lucas, J.L. Valverde, and F. Dorado, Ind. Eng.
Chem. Res., 36 (1997), 4797-4808.
S. Triwahyono, A.A. Jalil, and M. Musthofa, Appl. Catal. A: Gen.,
(2010), 90-93.
O.B. Yang, S.I. Woo, in: L. Guczi, F. Solymosi, and P. Tetenyi
(Eds.), New Frontiers in Catalysis, Proc. 10th Int. Cong. Catal.,
Budapest, Hungary, 19-24 July 1992, Elsevier Science Publishers
B.V., Amsterdam, 1993, p. 671-680.
A.K. Aboul-Gheit, A.E. Awadallah, N.A.K. Aboul-Gheit, E.S.A.
Solyman, and M.A. Abdel-Aaty, Appl. Catal. A: Gen., 334 (2008),
-310.
H.D. Setiabudi, A.A. Jalil, S. Triwahyono, N.H.N. Kamarudin, and
R.R. Mukti, Appl. Catal. A: Gen., 417-418 (2012), 190-199.
M.A.A. Aziz, N.H.N. Kamarudin, H.D. Setiabudi, H. Hamdan, A.A.
Jalil, and S. Triwahyono, J. Nat. Gas Chem., 21 (2012), 29-36.
H.D. Setiabudi, A.A. Jalil, and S. Triwahyono, J. Catal., 294 (2012),
-135.
S. Triwahyono, T. Yamada, and H. Hattori, Appl. Catal. A: Gen.,
(2003), 75-81.
S. Triwahyono, T. Yamada, and H. Hattori, Appl. Catal. A: Gen.,
(2003), 101-109.
S. Triwahyono, A.A. Jalil, and H. Hattori, J. Nat. Gas Chem., 16
(2007), 252-257.
S. Triwahyono, T. Yamada, and H. Hattori, Catal.Lett., 85 (2003),
-115.
S. Triwahyono, Z. Abdullah, and A.A. Jalil, J. Nat. Gas Chem. 15
(2006), 247-252.
S. Triwahyono, A.A. Jalil, S.N. Timmiati, N.N. Ruslan, and H.
Hattori, Appl. Catal. A: Gen., 372 (2010), 103-107.
N.N. Ruslan, N.A. Fadzlillah, A.H. Karim, A.A. Jalil, and S.
Triwahyono, Appl. Catal. A: Gen., 406 (2011), 102-112.
C. Morterra, G. Cerrato, and G. Meligrana, Langmuir, 17 (2001),
A.K. Aboul-Gheit, S.M. Aboul-Fotouh, and N.A.K. Aboul-Gheit,
Appl. Catal. A: Gen,.283 (2005), 157.
A.K. Aboul-Gheit, A.E. Awadallah, S.M. El-Kossy, and A.L.H.
Mahmoud, J. Nat. Gas Chem., 17 (2008), 337.
A. de Lucas, P. Sánchez, F. Dorado, M.J. Ramos, and J.L.
Valverde, Appl. Catal. A: Gen., 294 (2005), 215.
S. Triwahyono, A.A. Jalil, R.R. Mukti, M. Musthofa, N.A.M.
Razali, and M.A.A. Aziz, Appl. Catal. A: Gen., 407 (2011) 91.