Phytochemical, cytotoxicity and antioxidant studies on the stem bark of Piper arborescens
DOI:
https://doi.org/10.11113/mjfas.v13n4.706Keywords:
Piper arborescens, phytochemical, cytotoxicity, antioxidantAbstract
Phytochemical study on the stem bark of P. arborescens has isolated six secondary metabolites from the crude extracts by using column chromatography, while identification was performed by using Gas Chromatography - Mass Spectrometry (GC-MS), Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). The isolated metabolites were identified as caryophyllene oxide (1), α-bisabolol (2), benzamide 2-(methylamino) (3), 2-ethylpiperidine (4), piperine (5) and methyl eugenol (6). Toxicity test on the four crude extracts of P. arborescens shows a high cytotoxicity against Artemia salina brine shrimp with LC50 values ranging from 13.12 to 58.70 µg/mL. Greater cytotoxicity of the crude extracts of P. arborescens indicated the presence of potent cytotoxic components in this Piper spp. Antioxidant assay of P. arborescens against 2-diphenyl-1-picrylhydrazyl (DPPH) indicated moderate antioxidant activities of methanol, dichloromethane, chloroform and hexane crude extracts with EC50 values of 21.68, 23.82, 32.88 and 36.88 µg/mL, respectively.References
F.P. Lee, Y.C. Chen, J.J. Chen, I.L. Tsai, and I.S. Chen, Helvetica Chimica Acta, 87 (2004) 463-468.
I.L. Tsai, F.P. Lee, C.C. Wu, C.Y. Duh, T. Ishikawa, J.J. Chen, Y.C. Chen, H. Seki, and I.S. Chen, Planta Medica, 71 (2005) 535-542.
B.A. Fasihuddin, N.M.S. Khairun Nisa, and Z.B. Assim, Journal of Fundamental Science, 6 (2010) 73-76.
A. Kalaiselvan, K. Gokulakrishnan, and T. Anand, Journal of Pharmaceutical and Biomedical Science, 20 (2012) 1-3.
M. Efdi, S. Fujita, T. Inuzuka, and M. Koketsu, Natural Product Research, 24 (2010) 657-662.
A.P. Danelutte, J.H.G. Lago, M.C.M. Young, and M.J. Kato, Phytochemistry, 64 (2003) 555-559.
S. Shalini, and P. Sampathkumar, (2012). International Journal of Current Science, 20 (2012) 209-218.
J.L. McLaughlin, 1991. Assay for Bioactivity, Academic Press, San Diego, 2012, p. 2-32.
H. Wang, M. Zhao, B. Yang, Y. Jiang, and G. Rao, Food Chemistry, 107 (2008) 1399-1406.
C.S. Tailor, and A. Goyal, American Journal of Ethnomedicine, 1 (2014) 244-249.
C.J. Morten, and B.A. Sparling, Application of NMR Techniques to the structural determination of caryophyllene oxide, Retrieves from https://ocw.mit.edu/courses/chemistry/5-46-organic-structure-determination/spring2007/projects/ 546.pdf, (2007).
A.R. Gohari, Abbas, A. Hadjiakhoondi, S. Esmaeil, S. Ebrahimi, S. Saeidnia, and A. Shafiee, DARU, 13 (2005) 177-181.
M.J. Chavan, P.S. Wakte, and D.B. Shinde, Phytomedicine, 17 (2010) 149-151.
K. Fidyt, A. Fiedorowicz, L. Strzadala, and A. Szummy, Cancer Medicine, John Wiley & Sons Ltd., 2016, p. 3007-3017.
S. Irna Syairini, Z.B. Assim, B.A. Fasihuddin, and J. Ismail, in: B.A. Fasihuddin, M. Sepiah, B.I. Isa, Z. Ramlah, W. Mohd Effendi, K. Meekiong, and Z.B. Assim, Taxonomy & Ecology - Beyond Classical Approaches. Universiti Malaysia Sarawak, 2012, p. 119-131.
T.C. Chieng, Z.B. Assim, and B.A. Fasihuddin, Analytical Chemistry: Application and current issues. Universiti Malaysia Sarawak, 2003, p. 169-174.
L.G. Luiz Gustavo, G.C. Maria, M.F.L. Esther, P.F. Matheus, F. Wellington, and L.N. David, Records of Natural Products, 9 (2015) 201-207.
K.A. Santos Nara, F.F.G. Rodrigues, H.D.M. Coutinho, G.S.B. Viana, and J.G.M. Costa, TEOP 16 (2013) 826-831.
M.R. Gomes-Carneiro, D.M.M. Dias, A.C.A.X. De-Oliveira, and F.J.R. Paumgartten, Mutation Research, 585 (2005) 105-112.
Anonymous, Overview on the chemistry of benzamide and its derivatives, Retrieved from http://shodhganga.inflibnet. ac.in/bitstream/10603/101063/10/10_chapter%201.pdf, (2016).
Anonymous, Answer Key Summer 2002. Spectrum 9: 2-Ethylpiperidine, Retrieved from http://www.chem.ucla. edu/~bacher/General/30BL/problems/spectroscopy/assignmentSu02/key, (2002).
R.J. Abraham, Modeling 1H-NMR spectra of organic compounds. Theory, Application and NMR Prediction. Wiley, Chichester, Retrieved from http://atb.uq.edu.au/molecule.pynmr_solvent=CDCL3&nmr_freq=500&molid=37739 #panel-nmr, (2008).
S.K. Reshmi, E. Sathya, and D.P. Suganya, African Journal of Pharmacy and Pharmacology, 4 (2010) 562-573.
M. Scherer, Chemicals for Pharmaceuticals. Raschig Chemicals, Retrieved from http://www.centralchem.co.jp/ image/Chem_Pharma.pdf, (2003).
K.C. Saha, H.P. Seal, and M.A. Noor, Journal of the Bangladesh Agricultural University, 11 (2013) 11-16.
V.R. Gottumukkala, S.R. Kolisetty, M. Triptikumar, and M.S.L. Madhavi, Journal of Pharmacy Research, 5 (2012) 165-168.
H.P. Chua, M. Syahida, D. Nicholas, and M. Suzalyna, MARDI Science and Technology Exhibition 2016, (2016, December 11).
Riyanto, S. Hardjono, and F. Erni, IOSR Journal of Applied Chemistry, 9 (2016) 105-112.
O.S.F. Raquel, M.M. Selene, H.S.B. Erika, S.N.B. Raimunda, A.C. Rossana, C.L. Ynayara, V.G.P.S. Nilce, J.M. Andre, J.C.S. Jose, and F.G.R. Marcos, Molecules, 16 (2011) 6422-6431.
Anonymous, Methyl eugenol 13CNMR: Chemical book. Retrieved from http://www. chemicalbook.com/SpectrumEN _93-15-2_13CNMR.htm, (2016).
M.J. Moshi, E. Innocent, J.J. Magadula, D.F. Otieno, A. Weisheit, P.K. Mbabazi, and R.S.O. Nondo, Tanzania Journal of Health Research, 12 (2010) 1-6.
M. Magdalene, S. Del, P.B. Clifford, and M.L.D. Charity, Journal of Multidisciplinary Studies, 3 (2014) 100-111.
A.M. Amal, I.A. Sami, and K.E.B. Farouk, PLOS One, 8 (2013) 60-69.
D. Sruthi, and T. John Zachariah, International Food Research Journal, 24 (2017) 75-85.