Dynamics of Root-Associated Microbiomes in Ratooning Sugarcane: Insights from Shotgun Metagenomic

Authors

  • Sulasti Sulastri Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Lina Herliana Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Nur Alfi Saryanah Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Yuda Purwana Roswanjaya Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • R. Bambang Sukmadi RResearch Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Ana Feronika Cindra Irawati Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Nia Asiani Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia
  • Prapti Sedijani Department of Biology Education, Mataram University, Mataram, West Nusa Tenggara 83125, Indonesia

DOI:

https://doi.org/10.11113/mjfas.v21n3.4301

Keywords:

Bioprospecting, continuous farming, microbial community, molecular ecology, sugarcane microbiome.

Abstract

Ratooning in sugarcane is crucial for agriculture sustainability, but the changes in microbial communities during consecutive ratooning remain unclear. We employed a shotgun metagenomic approach using Illumina 454 sequencing to investigate the root-associated microbial community in four sugarcane plantation sites, with three sites in the Dompu Regency and one in the Madiun Regency. The results revealed variations in the root-associated microbiome between ratoon and plant cane, as well as across different sites. pH, total organic carbon, and nitrogen were found to influence the community structure.  Across the four sites, we identified 395 species, including 382 species of bacteria, 10 species of archaea, and 3 species of eukaryotes.  In the ratoon plants of Dompu, the most abundant species was Paraburkholderia caribensis (40%), whereas  in the plant cane dominated by Rhizobium pusense (16%)., In Madiun, the predominant species in ratoon plants was Rhodanobacter sp. DHG33 (20%) and Paraburkholderia sp. SOS3 (16%). These bacterial species may serve as key contributors to plant growth in ratooning plantations in these regions. The fungal community declined during the ratooning cycle but increased at later stages, possibly indicating a more stable fungal community in mature ratoon crops. The community structure varied, with bacteria more abundant in Dompu Regency's ratoon plants and archaea in Madiun Regency's ratoon plants. Understanding microbial dynamics across these four sites will support the development of sustainable strategies for ratooning practices in sugarcane production. 

Author Biography

R. Bambang Sukmadi, RResearch Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, West Java 16911, Indonesia

Microbiology, Plant-microbe interaction

References

Cherubin, M. R., Carvalho, J. L. N., Cerri, C. E. P., Nogueira, L. A. H., Souza, G. M., & Cantarella, H. (2021). Land use and management effects on sustainable sugarcane-derived bioenergy. Land, 10(1), 72.

Ungureanu, N., Vlăduț, V., & Biriș, S. Ștefan. (2022). Sustainable valorization of waste and by-products from sugarcane processing. Sustainability, 14(17), 11089.

Zhao, D., & Li, Y. R. (2015). Climate change and sugarcane production: Potential impact and mitigation strategies. International Journal of Agronomy, 2015, 1–10.

Pang, Z., Tayyab, M., Kong, C., Liu, Q., Liu, Y., Hu, C., Huang, J., Weng, P., Islam, W., Lin, W., & Yuan, Z. (2021). Continuous sugarcane planting negatively impacts soil microbial community structure, soil fertility, and sugarcane agronomic parameters. Microorganisms, 9(10), 2008.

Global market report: Sugar cane prices and sustainability.

Statistik data – Asosiasi Gula Indonesia. (2020). Retrieved June 30, 2024, from https://asosiasigulaindonesia.org/category/statistik-data/

Sulaiman, A. A., Arsyad, M., Amiruddin, A., Teshome, T. T., & Nishanta, B. (2023). New trends of sugarcane cultivation systems toward sugar production on the free market: A review. AGRIVITA Journal of Agricultural Science, 45(2), 395–406.

Chandra, A., Gaur, V., & Tripathi, P. (2021). Microbiome analysis of rhizospheres of plant and winter-initiated ratoon crops of sugarcane grown in sub-tropical India: Utility to improve ratoon crop productivity. 3 Biotech, 11(1), 34.

Islam, Md. S., Corak, K., McCord, P., Hulse-Kemp, A. M., & Lipka, A. E. (2023). A first look at the ability to use genomic prediction for improving the ratooning ability of sugarcane. Frontiers in Plant Science, 14, 1205999.

Xu, F., Wang, Z., Lu, G., Zeng, R., & Que, Y. (2021). Sugarcane ratooning ability: Research status, shortcomings, and prospects. Biology, 10(10), 1052.

Bhatt, R., Singh, P., Ali, O. M., Abdel Latef, A. A. H., Laing, A. M., & Hossain, A. (2021). Yield and quality of ratoon sugarcane are improved by applying potassium under irrigation to potassium deficient soils. Agronomy, 11(7), 1381.

Khan, A., Wei, Y., Adnan, M., Ali, I., & Zhang, M. (2023). Dynamics of rhizosphere bacterial communities and soil physiochemical properties in response to consecutive ratooning of sugarcane. Frontiers in Microbiology, 14, 1197246.

Gupta, A., Singh, U. B., Sahu, P. K., Paul, S., Kumar, A., Malviya, D., Singh, S., Kuppusamy, P., Singh, P., Paul, D., Rai, J. P., Singh, H. V., Manna, M. C., Crusberg, T. C., Kumar, A., & Saxena, A. K. (2022). Linking soil microbial diversity to modern agriculture practices: A review. International Journal of Environmental Research and Public Health, 19(5), 3141.

Putra, R. P., Ranomahera, M. R. R., Rizaludin, M. S., Supriyanto, R., & Dewi, V. A. K. (2020). Short communication: Investigating environmental impacts of long-term monoculture of sugarcane farming in Indonesia through DPSIR framework. Biodiversitas, 21(10). Retrieved July 1, 2024, from https://smujo.id/biodiv/article/view/6268

Acharya, S. M., Yee, M. O., Diamond, S., Andeer, P. F., Baig, N. F., Aladesanmi, O. T., Northen, T. R., Banfield, J. F., & Chakraborty, R. (2023). Fine scale sampling reveals early differentiation of rhizosphere microbiome from bulk soil in young Brachypodium plant roots. ISME Communications, 3(1), 54.

Babalola, O. O., Emmanuel, O. C., Adeleke, B. S., Odelade, K. A., Nwachukwu, B. C., Ayiti, O. E., Adegboyega, T. T., & Igiehon, N. O. (2021). Rhizosphere microbiome cooperations: Strategies for sustainable crop production. Current Microbiology, 78(4), 1069–1085.

Chen, Y., Yao, Z., Sun, Y., Wang, E., Tian, C., Sun, Y., Liu, J., Sun, C., & Tian, L. (2022). Current studies of the effects of drought stress on root exudates and rhizosphere microbiomes of crop plant species. International Journal of Molecular Sciences, 23(4), 2374.

Chepsergon, J., & Moleleki, L. N. (2023). Rhizosphere bacterial interactions and impact on plant health. Current Opinion in Microbiology, 73, 102297.

Che, J., Wu, Y., Yang, H., Wang, S., Wu, W., Lyu, L., & Li, W. (2022). Long-term cultivation drives dynamic changes in the rhizosphere microbial community of blueberry. Frontiers in Plant Science, 13. Retrieved June 30, 2024, from https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.962759/full

Khan, N., Ali, S., Shahid, M. A., Mustafa, A., Sayyed, R. Z., & Curá, J. A. (2021). Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells, 10(6), 1551.

Nam, N. N., Do, H. D. K., Trinh, L. K. T., & Lee, N. Y. (2023). Metagenomics: An effective approach for exploring microbial diversity and functions. Foods, 12(11), 2140.

Singh, S., Singh, S., Lukas, S. B., Machado, S., Nouri, A., Calderon, F., Rieke, E. R., & Cappellazzi, S. B. (2023). Long-term agro-management strategies shape soil bacterial community structure in dryland wheat systems. Scientific Reports, 13(1), 13929.

Sugar cane Dompu research | PDF | Sugarcane | Agriculture. Retrieved May 7, 2025, from https://www.scribd.com/document/361090617/sugar-cane-dompu-research

Putra, R., Ranomahera, M., Rizaludin, M. S., Supriyanto, R., & Dewi, V. A. K. (2020). Short communication: Investigating environmental impacts of long-term monoculture of sugarcane farming in Indonesia through DPSIR framework. Biodiversitas Journal of Biological Diversity, 21, 4945–4958.

De Souza, R. S. C., Okura, V. K., Armanhi, J. S. L., Jorrín, B., Lozano, N., Da Silva, M. J., González-Guerrero, M., De Araújo, L. M., Verza, N. C., Bagheri, H. C., Imperial, J., & Arruda, P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 6(1), 28774.

Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.

Blanco-Míguez, A., Beghini, F., Cumbo, F., McIver, L. J., Thompson, K. N., Zolfo, M., Manghi, P., Dubois, L., Huang, K. D., Thomas, A. M., Nickols, W. A., Piccinno, G., Piperni, E., Punčochář, M., Valles-Colomer, M., Tett, A., Giordano, F., Davies, R., Wolf, J., ... Segata, N. (2023). Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nature Biotechnology, 41(11), 1633–1644.

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.

Uritskiy, G. V., DiRuggiero, J., & Taylor, J. (2018). MetaWRAP—A flexible pipeline for genome-resolved metagenomic data analysis. Microbiome, 6(1), 158.

Nurk, S., Meleshko, D., Korobeynikov, A., & Pevzner, P. A. (2017). metaSPAdes: A new versatile metagenomic assembler. Genome Research, 27(5), 824–834.

Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257.

Martins, B. R., Siani, R., Treder, K., Michałowska, D., Radl, V., Pritsch, K., & Schloter, M. (2023). Cultivar-specific dynamics: Unravelling rhizosphere microbiome responses to water deficit stress in potato cultivars. BMC Microbiology, 23(1), 377.

Sondo, M., Wonni, I., Koïta, K., Rimbault, I., Barro, M., Tollenaere, C., Moulin, L., & Klonowska, A. (2023). Diversity and plant growth promoting ability of rice root-associated bacteria in Burkina-Faso and cross-comparison with metabarcoding data. PLOS ONE, 18(11), e0287084.

Sun, R. Z., Wang, Y. Y., Liu, X. Q., Yang, Z. L., & Deng, X. (2024). Structure and dynamics of microbial communities associated with the resurrection plant Boea hygrometrica in response to drought stress. Planta, 260(1), 24.

Ren, Q., Khan, A., Zhang, J., Bao, Y., Khan, M. T., Wang, J., Xu, S., & Zhang, M. (2024). Fungal community dynamics associated with the outbreaks of sugarcane root rot disease. Microbiology Spectrum, 12(2), e03090-23.

Bai, B., Liu, W., Qiu, X., Zhang, J., Zhang, J., & Bai, Y. (2022). The root microbiome: Community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology, 64(2), 230–243.

Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13(3), 1140.

García-López, J. V., Redondo-Gómez, S., Flores-Duarte, N. J., Rodríguez-Llorente, I. D., Pajuelo, E., & Mateos-Naranjo, E. (2024). PGPR-based biofertilizer modulates strawberry photosynthetic apparatus tolerance responses by severe drought, soil salinization and short extreme heat event. Plant Stress, 12, 100448.

Khan, A. L. (2023). The phytomicrobiome: Solving plant stress tolerance under climate change. Frontiers in Plant Science, 14, 1219366.

Ma, Y., Dias, M. C., & Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, 11, 591911.

Yamamoto, K., Shiwa, Y., Ishige, T., Sakamoto, H., Tanaka, K., Uchino, M., Tanaka, N., Oguri, S., Saitoh, H., & Tsushima, S. (2018). Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea. Frontiers in Microbiology, 9, 2878.

Zhang, Y., Zhan, J., Ma, C., Liu, W., Huang, H., Yu, H., Christie, P., Li, T., & Wu, L. (2024). Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). Ecotoxicology and Environmental Safety, 269, 115739.

Kool, J., Tymchenko, L., Shetty, S. A., & Fuentes, S. (2023). Reducing bias in microbiome research: Comparing methods from sample collection to sequencing. Frontiers in Microbiology, 14. Retrieved May 7, 2025, from https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1094800/full

Forry, S. P., Servetas, S. L., Kralj, J. G., Soh, K., Hadjithomas, M., Cano, R., Carlin, M., Amorim, M. G. D., Auch, B., Bakker, M. G., Bartelli, T. F., Bustamante, J. P., Cassol, I., Chalita, M., Dias-Neto, E., Duca, A. D., Gohl, D. M., Kazantseva, J., Haruna, M. T., ... Fields, M. W. (2024). Variability and bias in microbiome metagenomic sequencing: An interlaboratory study comparing experimental protocols. Scientific Reports, 14(1), 9785.

Liu, X., Wang, Y., Liu, Y., Chen, H., & Hu, Y. (2020). Response of bacterial and fungal soil communities to Chinese fir (Cunninghamia lanceolate) long-term monoculture plantations. Frontiers in Microbiology, 11, 181.

Liu, X., Liu, L., Gong, J., Zhang, L., Jiang, Q., Huang, K., & Ding, W. (2022). Soil conditions on bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. AMB Express, 12(1), 110.

Beckers, B., Op De Beeck, M., Weyens, N., Boerjan, W., & Vangronsveld, J. (2017). Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 5(1), 25.

Ling, N., Wang, T., & Kuzyakov, Y. (2022). Rhizosphere bacteriome structure and functions. Nature Communications, 13(1), 836.

Fernández-González, A. J., Villadas, P. J., Gómez-Lama Cabanás, C., Valverde-Corredor, A., Belaj, A., Mercado-Blanco, J., & Fernández-López, M. (2019). Defining the root endosphere and rhizosphere microbiomes from the World Olive Germplasm Collection. Scientific Reports, 9(1), 20423.

Jatoi, M. T., Lan, G., Wu, Z., Sun, R., Yang, C., & Tan, Z. (2019). Comparison of soil microbial composition and diversity between mixed and monoculture rubber plantations in Hainan Province, China. Tropical Conservation Science, 12, 1940082919876072.

Li, R., Pang, Z., Zhou, Y., Fallah, N., Hu, C., Lin, W., & Yuan, Z. (2020). Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in sugarcane fields applied with organic fertilizer. BioMed Research International, 2020, 1–11.

Gao, X., Wu, Z., Liu, R., Wu, J., Zeng, Q., & Qi, Y. (2019). Rhizosphere bacterial community characteristics over different years of sugarcane ratooning in consecutive monoculture. BioMed Research International, 2019, 1–10.

Xia, Q., Rufty, T., & Shi, W. (2020). Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry, 149, 107953.

Berger, B., Baldermann, S., & Ruppel, S. (2017). The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. Journal of the Science of Food and Agriculture, 97(14), 4865–4871.

Sun, S. L., Yang, W. L., Fang, W. W., Zhao, Y. X., Guo, L., & Dai, Y. J. (2018). The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. Applied and Environmental Microbiology, 84(16), e00298-18.

Bellés-Sancho, P., Beukes, C., James, E. K., & Pessi, G. (2023). Nitrogen-fixing symbiotic Paraburkholderia species: Current knowledge and future perspectives. Nitrogen, 4(1), 135–158.

Mazoyon, C., Catterou, M., Alahmad, A., Mongelard, G., Guénin, S., Sarazin, V., Dubois, F., & Duclercq, J. (2023). Sphingomonas sediminicola Dae20 is a highly promising beneficial bacteria for crop biostimulation due to its positive effects on plant growth and development. Microorganisms, 11(8), 2061.

Leite, M. F. A., Dimitrov, M. R., Freitas-Iório, R. P., De Hollander, M., Cipriano, M. A. P., Andrade, S. A. L., Da Silveira, A. P. D., & Kuramae, E. E. (2021). Rearranging the sugarcane holobiont via plant growth-promoting bacteria and nitrogen input. Science of the Total Environment, 800, 149493.

Gohlke, J., & Deeken, R. (2014). Plant responses to Agrobacterium tumefaciens and crown gall development. Frontiers in Plant Science, 5. Retrieved May 7, 2025, from https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2014.00155/full

Macedo-Raygoza, G. M., Valdez-Salas, B., Prado, F. M., Prieto, K. R., Yamaguchi, L. F., Kato, M. J., Canto-Canché, B. B., Carrillo-Beltrán, M., Di Mascio, P., White, J. F., & Beltrán-García, M. J. (2019). Enterobacter cloacae, an endophyte that establishes a nutrient-transfer symbiosis with banana plants and protects against the black Sigatoka pathogen. Frontiers in Microbiology, 10. Retrieved May 7, 2025, from https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2019.00804/full

Woo, H., Kim, I., Geeta, C., Park, S., Lee, H., Yook, S., & Seo, T. (2024). Two novel bacterial species, Rhodanobacter lycopersici sp. nov. and Rhodanobacter geophilus sp. nov., isolated from the rhizosphere of Solanum lycopersicum with plant growth-promoting traits. Microorganisms, 12, 2227.

Bouam, A., Armstrong, N., Levasseur, A., & Drancourt, M. (2018). Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Scientific Reports, 8(1), 9309.

Chen, Y., Trotter, V. V., Walian, P. J., Chen, Y., Lopez, R., Lui, L. M., Nielsen, T. N., Malana, R. G., Thorgersen, M. P., Hendrickson, A. J., Carion, H., Deutschbauer, A. M., Petzold, C. J., Smith, H. J., Arkin, A. P., Adams, M. W. W., Fields, M. W., & Chakraborty, R. (2024). Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. The ISME Journal, 18(1), wrae151.

Lee, S. M., Kong, H. G., Song, G. C., & Ryu, C. M. (2021). Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. ISME Journal, 15(1), 330–347.

Nelkner, J., Huang, L., Lin, T. W., Schulz, A., Osterholz, B., Henke, C., Blom, J., Pühler, A., Sczyrba, A., & Schlüter, A. (2023). Abundance, classification and genetic potential of Thaumarchaeota in metagenomes of European agricultural soils: A meta-analysis. Environmental Microbiome, 18(1), 26.

Cheng, Y., Zhou, L., Liang, T., Man, J., Wang, Y., Li, Y., Chen, H., & Zhang, T. (2021). Deciphering rhizosphere microbiome assembly of Castanea henryi in plantation and natural forest. Microorganisms, 10(1), 42.

Challacombe, J. F., Hesse, C. N., Bramer, L. M., McCue, L. A., Lipton, M., Purvine, S., Nicora, C., Gallegos-Graves, L. V., Porras-Alfaro, A., & Kuske, C. R. (2019). Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics, 20(1), 976.

Arafat, Y., Tayyab, M., Khan, M. U., Chen, T., Amjad, H., Awais, S., Lin, X., Lin, W., & Lin, S. (2019). Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy, 9(8), 466.

Sang, Y., Ren, K., Chen, Y., Wang, B., Meng, Y., Zhou, W., Jiang, Y., & Xu, J. (2024). Integration of soil microbiology and metabolomics to elucidate the mechanism of the accelerated infestation of tobacco by the root-knot nematode. Frontiers in Microbiology, 15. Retrieved May 6, 2025, from https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2024.1455880/full

Thepbandit, W., & Athinuwat, D. (2024). Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms, 12(3), 558.

Bergelson, J., Mittelstrass, J., & Horton, M. W. (2019). Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome. Scientific Reports, 9(1), 24.

Yao, Y., Zhao, Y., Yao, X., Bai, Y., An, L., Li, X., & Wu, K. (2022). Impacts of continuous cropping on fungal communities in the rhizosphere soil of Tibetan barley. Frontiers in Microbiology, 13. Retrieved May 7, 2025, from https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.755720/full

He, D., Yao, X., Zhang, P., Liu, W., Huang, J., Sun, H., Wang, N., Zhang, X., Wang, H., Zhang, H., Ao, X., & Xie, F. (2023). Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots. Microbiology Spectrum, 11(6), e01786-23.

Wang, S., Cheng, J., Li, T., & Liao, Y. (2020). Response of soil fungal communities to continuous cropping of flue-cured tobacco. Scientific Reports, 10(1), 19911.

Taffner, J., Erlacher, A., Bragina, A., Berg, C., Moissl-Eichinger, C., & Berg, G. (2018). What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere, 3(3), e00122.

Liu, Z., Liu, J., Yu, Z., Li, Y., Hu, X., Gu, H., Li, L., Jin, J., Liu, X., & Wang, G. (2022). Archaeal communities perform an important role in maintaining microbial stability under long term continuous cropping systems. Science of the Total Environment, 838, 156413.

Zakavi, M., Askari, H., & Shahrooei, M. (2022). Characterization of bacterial diversity between two coastal regions with heterogeneous soil texture. Scientific Reports, 12(1), 18901.

Downloads

Published

12-06-2025