Enhancing the Performance of Pressure Regulation via Genetic Algorithm (GA) for Negative Pressure Wound Therapy (NPWT) System
DOI:
https://doi.org/10.11113/mjfas.v21n3.4226Keywords:
Control system, fuzzy logic, genetic algorithm, negative pressure wound therapy.Abstract
Hard-to-heal wounds, such as diabetic foot ulcers, have become a significant healthcare concern with the rising incidence of diabetes. Negative Pressure Wound Therapy (NPWT) has shown advantages over traditional wound management methods, but the classical NPWT controllers have issues with unstable pressure generation and occasional injury. To address this, fuzzy logic has been integrated into NPWT systems to enhance performance. However, fuzzy controllers have limitations due to uncertainty and inconsistency in system design. This study hybridizes a genetic algorithm (GA) with the fuzzy NPWT system to improve negative pressure regulation stability. Comparative performance evaluations showed that GA-fuzzy NPWT reduced the mean steady-state error by 56.60%, increased the rise time by 10.31%, and reduced overshoot by 4.92%. However, the integration of GA also led to an increase in standard deviation, improving accuracy but raising variability in the system.
References
Qi, L., Ou, K., Hou, Y., Yuan, P., Yu, W., Li, X., et al. (2021). Unidirectional water-transport antibacterial trilayered nanofiber-based wound dressings induced by hydrophilic-hydrophobic gradient and self-pumping effects. Materials & Design, 201, 109461. https://doi.org/10.1016/j.matdes.2021.109461
Jiang, Z.-Y., Yu, X.-T., Liao, X.-C., Liu, M.-Z., Fu, Z.-H., Min, D.-H., & Guo, G.-H. (2021). Negative-pressure wound therapy in skin grafts: A systematic review and meta-analysis of randomized controlled trials. Burns, 47(4), 747–755. https://doi.org/10.1016/j.burns.2021.02.012
Birke-Sorensen, H., Malmsjo, M., Rome, P., Hudson, D., Krug, E., Berg, L., et al. (2011). Evidence-based recommendations for negative pressure wound therapy: Treatment variables (pressure levels, wound filler and contact layer) – Steps towards an international consensus. Journal of Plastic, Reconstructive & Aesthetic Surgery, 64, S1–S16. https://doi.org/10.1016/j.bjps.2011.06.001
Borgquist, O., Ingemansson, R., & Malmsjö, M. (2010). The effect of intermittent and variable negative pressure wound therapy on wound edge microvascular blood flow. Ostomy Wound Management, 56(3), 60–67.
Liu, S., He, C. Z., Cai, Y. T., Xing, Q. P., Guo, Y. Z., Chen, Z. L., et al. (2017). Evaluation of negative-pressure wound therapy for patients with diabetic foot ulcers: Systematic review and meta-analysis. Therapeutics and Clinical Risk Management, 13, 533–544. https://doi.org/10.2147/TCRM.S131193
Mattox, E. A. (2017). Reducing risks associated with negative-pressure wound therapy: Strategies for clinical practice. Critical Care Nurse, 37(5), 67–77. https://doi.org/10.4037/ccn2017308
Putnis, S., Khan, W. S., & Wong, J. M. (2014). Negative pressure wound therapy - a review of its uses in orthopaedic trauma. The Open Orthopaedics Journal, 8, 142–147. https://doi.org/10.2174/1874325001408010142
Wallis, L. (2010). FDA warning about negative pressure wound therapy. The American Journal of Nursing, 110(3), 16. https://doi.org/10.1097/01.NAJ.0000368938.90936.17
Jia Hou, T., Tian Swee, T., Ling Chia Hiik, K., Zaharil Mat Saad, A., & Ahmed Malik, S. (2022). Two-N input output mapping relationship fuzziness adaptation approach for fuzzy based negative pressure wound therapy system. Expert Systems with Applications, 208, 118206. https://doi.org/10.1016/j.eswa.2022.118206
Tan, J. H., Tan, T. S., Rafiq, M., Kadir, A., Mat Saad, A., Teoh, C.-K., et al. (2017). Incorporating fuzzy logic into an adaptive negative pressure wound therapy device. Journal of Telecommunication, Electronic and Computer Engineering, 9(2-5), 85–89.
Masoumi, M., Hossani, S., Dehghani, F., & Masoumi, A. (2020). The challenges and advantages of fuzzy systems applications. https://doi.org/10.13140/RG.2.2.22310.96328
Nguyen, A.-T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., & Sugeno, M. (2019). Fuzzy control systems: Past, present and future. IEEE Computational Intelligence Magazine, 14(1), 56–68. https://doi.org/10.1109/MCI.2018.2881644
Huda, S., Sarno, R., & Ahmad, T. (2015). Fuzzy MADM approach for rating of process-based fraud. Journal of ICT Research and Applications, 9(2), 111–128. https://doi.org/10.5614/itbj.ict.res.appl.2015.9.2.1
Pezeshki, Z., & Mazinani, S. M. (2019). Comparison of artificial neural networks, fuzzy logic and neuro fuzzy for predicting optimization of building thermal consumption: A survey. Artificial Intelligence Review, 52(1), 495–525. https://doi.org/10.1007/s10462-018-9630-6
Debnath, S. B. C., Shill, P., & Murase, K. (2013). Particle swarm optimization based adaptive strategy for tuning of fuzzy logic controller. International Journal of Artificial Intelligence & Applications, 4(1), 37–50. https://doi.org/10.5121/ijaia.2013.4104
Hannan, M. A., Ali, J. A., Hossain Lipu, M. S., Mohamed, A., Ker, P. J., Indra Mahlia, T. M., & Dong, Z. Y. (2020). Role of optimization algorithms based fuzzy controller in achieving induction motor performance enhancement. Nature Communications, 11(1), 3792. https://doi.org/10.1038/s41467-020-17623-5
Jahedi, G., & Ardehali, M. M. (2011). Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system. Energy Conversion and Management, 52(1), 725–732. https://doi.org/10.1016/j.enconman.2010.07.051
Pelusi, D. (2011). Optimization of a fuzzy logic controller using genetic algorithms. Proceedings of the 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics, 2, 1–4. https://doi.org/10.1109/IHMSC.2011.105
Zatout, M. S., Rezoug, A., Rezoug, A., Baizid, K., & Iqbal, J. (2022). Optimisation of fuzzy logic quadrotor attitude controller – Particle swarm, cuckoo search and BAT algorithms. International Journal of Systems Science, 53(4), 883–908. https://doi.org/10.1080/00207721.2021.1988720
Khokhar, S. U. D., Peng, Q., Asif, A., Noor, M. Y., & Inam, A. (2020). A simple tuning algorithm of augmented fuzzy membership functions. IEEE Access, 8, 35805–35814. https://doi.org/10.1109/ACCESS.2020.2974533
Mohammed, S. S., Devaraj, D., & Ahamed, T. P. I. (2021). GA-optimized fuzzy-based MPPT technique for abruptly varying environmental conditions. Journal of The Institution of Engineers (India): Series B, 102(3), 497–508. https://doi.org/10.1007/s40031-021-00552-2
Adrian, A. M., Utamima, A., & Wang, K.-J. (2015). A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE Journal of Civil Engineering, 19(3), 520–527. https://doi.org/10.1007/s12205-013-1467-6
Eberhart, R., & Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization (Vol. 1447). https://doi.org/10.1007/BFb0040812
Martínez-Soto, R., Castillo, O., Aguilar, L. T., & Rodriguez, A. (2015). A hybrid optimization method with PSO and GA to automatically design Type-1 and Type-2 fuzzy logic controllers. International Journal of Machine Learning and Cybernetics, 6(2), 175–196. https://doi.org/10.1007/s13042-013-0170-8
Cabaneros, S. M., & Hughes, B. (2022). Methods used for handling and quantifying model uncertainty of artificial neural network models for air pollution forecasting. Environmental Modelling & Software, 158, 105529. https://doi.org/10.1016/j.envsoft.2022.105529
Divya, N., Deepthi, S., Kumaar, G. S., & Manoharan, S. (2022). Chapter 8 - Modeling techniques used in smart agriculture. In M. A. Khan, R. Khan, & M. A. Ansari (Eds.), Application of machine learning in agriculture (pp. 159–172). Academic Press. https://doi.org/10.1016/B978-0-323-90550-3.00001-1
Kayacan, E., & Khanesar, M. A. (2016). Chapter 2 - Fundamentals of Type-1 Fuzzy Logic Theory. In E. Kayacan & M. A. Khanesar (Eds.), Fuzzy neural networks for real time control applications (pp. 13–24). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-802687-8.00002-5
Yadav, R. S. (2021). Chapter 6 - Application of soft computing techniques to calculation of medicine dose during the treatment of patient: A fuzzy logic approach. In J. Nayak, B. Naik, D. Pelusi, & A. K. Das (Eds.), Handbook of computational intelligence in biomedical engineering and healthcare (pp. 151–178). Academic Press. https://doi.org/10.1016/B978-0-12-822260-7.00003-0
Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: Past, present, and future. Multimedia Tools and Applications, 80(5), 8091–8126. https://doi.org/10.1007/s11042-020-10139-6
Lappas, P. Z., & Yannacopoulos, A. N. (2021). A machine learning approach combining expert knowledge with genetic algorithms in feature selection for credit risk assessment. Applied Soft Computing, 107, 107391. https://doi.org/10.1016/j.asoc.2021.107391
Hassanat, A., Almohammadi, K., Alkafaween, E. a., Abunawas, E., Hammouri, A., & Prasath, V. B. S. (2019). Choosing mutation and crossover ratios for genetic algorithms—A review with a new dynamic approach. Information, 10(12), 390. https://www.mdpi.com/2078-2489/10/12/390
Alam, T., Qamar, S., Dixit, A., & Benaida, M. (2020). Genetic algorithm: Reviews, implementations, and applications. https://doi.org/10.36227/techrxiv.12657173
Wang, D., Sun, W., Gao, Z., & Ma, H. (2022). Optimization of spatial pipeline with multi-hoop supports for avoiding resonance problem based on genetic algorithm. Science Progress, 105(1), 00368504211070401. https://doi.org/10.1177/00368504211070401
Yu, Y., Xu, G., Zhao, P., & Zhang, J. (2024). Biocompatible, robust, waterproof and breathable PDMS-based PU fibrous membranes for potential application in wound dressing. Materials Today Communications, 38, 107870. https://doi.org/10.1016/j.mtcomm.2023.107870
Liu, J., Cao, T., Deng, Z., Shi, H., Liang, L., Wu, X., & Jiang, S. (2024). Damping characteristics improvement of permanent magnet electrodynamic suspension by utilizing the end-effect of onboard magnets. Electrical Engineering, 106(1), 15–29. https://doi.org/10.1007/s00202-023-01959-4
Wang, T., Jiao, Z., & Yan, L. (2016). Underdamping characteristic analysis and dual-feedback control for flooded linear oscillating motor. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), 1–6. https://doi.org/10.1109/CGNCC.2016.7829014
Ledeneva, Y., García Hernández, R. A., & Gelbukh, A. (2008). Automatic estimation of parameters of complex fuzzy control systems. In Fuzzy logic: Algorithms, techniques and implementations. https://doi.org/10.5772/6268
Shukur, F., Mosa, S., & M. H. Raheem, K. (2024). Optimization of Fuzzy-PD control for a 3-DOF robotics manipulator using a back-propagation neural network. Mathematical Modelling of Engineering Problems, 11(1), 199–209. https://doi.org/10.18280/mmep.110122
Silva, K. D. C., Becvar, Z., & Frances, C. R. L. (2018). Adaptive hysteresis margin based on fuzzy logic for handover in mobile networks with dense small cells. IEEE Access, 6, 17178–17189. https://doi.org/10.1109/ACCESS.2018.2811047
Hameed, I. A. (2011). Using Gaussian membership functions for improving the reliability and robustness of students' evaluation systems. Expert Systems with Applications, 38(6), 7135–7142. https://doi.org/10.1016/j.eswa.2010.12.048
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tan Tian Swee, Jahanzeb Sheikh, Hira Zahid, Sidra Agha Abid, Muhammad Jawad Shafique, Maheza Irna Binti Salim, Ooi Jin Kiak, Muhammad Kashif Shaikh, Michael Loong Peng Tan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.