Preliminary Evaluation of Supercritical Fluid Extraction Conditions for Phenolic and Flavonoid Compounds Recovery from Swietenia macrophylla Seeds
DOI:
https://doi.org/10.11113/mjfas.v21n2.4221Keywords:
Swietenia macrophylla, total phenolic content, total flavonoid content, supercritical fluid extraction.Abstract
Swietenia macrophylla is a tropical hardwood tree recognized for its bioactive compounds, including phenolics and flavonoids, which offer potential antioxidants, anti-inflammatory, and other therapeutic benefits. However, the extraction process has not been thoroughly investigated, particularly due to their oily nature. This study investigates the influence of supercritical fluid extraction (SFE) parameters on the total phenolic content (TPC) and total flavonoid content (TFC) of S. macrophylla seeds, incorporating ethanol as the polar modifier. The effects of CO₂ flow rate, temperature, and pressure on bioactive compound recovery were analysed. The finding indicates that a CO₂ flow rate of 2 mL/min, a temperature of 60°C, and a pressure of 20 MPa yielded the highest TPC (74.00 mg GAE/g) and TFC (42.34 mg QE/g). The S. macrophylla seeds extract exhibited a scavenging activity of 21.062±1.45 mg TE/g using the FRAP assay. Gas chromatography-mass spectrometry (GC-MS) identified eight major bioactive compounds, with linoleic (62.88±0.71%) and oleic acids (15.24±0.90%) as the predominant fatty acids. The presence of eugenol, a polar compound, highlights the effectiveness of ethanol as a modifier in enhancing SFE, enabling the extraction of both polar and non-polar compounds from S. macrophylla seed oil. The results demonstrate the enhanced efficiency of SFE with ethanol as a modifier compared to SFE alone. These findings provide valuable insights into optimizing SFE parameters for the efficient recovery of phenolic and flavonoid compounds from S. macrophylla seeds. Future research utilizing a Design of Experiments (DOE) approach will further deepen our understanding of the extraction process and its potential applications.
References
Eid, A. M., Elmarzugi, N. A., El-Enshasy, H. A., & Arafat, O. M. (2013). A novel Swietenia macrophylla oil self-nanoemulsifying system: Development and evaluation. International Journal of Pharmacy and Pharmaceutical Sciences, 5(SUPPL 3), 639–644.
Tohir, D., & Sari, F. (2020). Cytotoxicity of the most active fraction of the seeds of Swietenia macrophylla using human breast cancer McF-7 cells. 23(7), 234–237.
CHE MAN, C. H. E. A. I., WAN ABDUL RAZAK, W. A. N. R., & RAJA YAHYA, M. F. Z. (2022). Antibacterial and antibiofilm activities of Swietenia macrophylla King ethanolic extract against foodborne pathogens. 51(4), 45–56.
Moghadamtousi, S., Goh, B., Chan, C., Shabab, T., & Kadir, H. (2013). Biological activities and phytochemicals of Swietenia macrophylla King. 18(9), 10465–10483.
Hashim, M., Yam, M. F., Hor, S. Y., Lim, C. P., Asmawi, M., & Sadikun, A. (2013). Anti-hyperglycaemic activity of Swietenia macrophylla King (Meliaceae) seed extracts in normoglycaemic rats undergoing glucose tolerance tests. 8(1), 11.
Assaduzzaman, Amin, Md. Z., Rahman, M. H., Uddin, Md. R., Shohanuzzaman, Md., Mandal, P., Karmoker, B. A., Dipu, Md. R., & Nejum, Md. R. (2020). Evaluation of antibacterial, anti-oxidant and cytotoxic activity of organic extracts of mahogany seeds. 1–7.
Mak, K., Zhang, S., Chellian, J., Zulkefeli, M., Epemolu, O., Dinkova‐Kostova, A. T., Balijepalli, M. K., & Pichika, M. R. (2023). Swietenine alleviates nonalcoholic fatty liver disease in diabetic mice via lipogenesis inhibition and antioxidant mechanisms. Antioxidants.
Lee, M., Rhee, Y.-K., Choi, S.-Y., Cho, C., Hong, H., & Kim, K. (2017). Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method. Journal of Ginseng Research.
Rizkiyah, D. N., Jusoh, W. M. S. W., Idham, Z., Putra, N. R., & Che Yunus, M. A. (2022). Investigation of phenolic, flavonoid, and antioxidant recovery and solubility from roselle using supercritical carbon dioxide: Experiment and modeling. 46(7).
Villacís-Chiriboga, J., Elst, K., Van Camp, J., Vera, E., & Ruales, J. (2020). Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Comprehensive Reviews in Food Science and Food Safety, 19(2), 405–447.
Lee, W., Mohd-nasir, H., Hamidah, S., Setapar, M., Ahmad, A., & Lokhat, D. (2020). Optimization of process variables using response surface methodology for tocopherol extraction from roselle seed oil by supercritical carbon dioxide. Industrial Crops & Products, 143(November 2019), 111886.
Leyva-Jiménez, F. J., Lozano-Sánchez, J., Fernández-Ochoa, Á., Cádiz-Gurrea, M. de la L., Arráez-Román, D., & Segura-Carretero, A. (2020). Optimized extraction of phenylpropanoids and flavonoids from lemon verbena leaves by supercritical fluid system using response surface methodology. 9(7), 931.
Kaur, S., & Ubeyitogullari, A. (2023). Extraction of phenolic compounds from rice husk via ethanol-water-modified supercritical carbon dioxide. Heliyon, 9(3), e14196.
Hasmida, M. N., Liza, M. S., Nur Syukriah, A. R., Harisun, Y., Mohd Azizi, C. Y., & Fadzilah Adibah, A. M. (2015). Total phenolic content and antioxidant activity of Quercus infectoria galls using supercritical CO2 extraction technique and its comparison with Soxhlet extraction. Pertanika Journal of Science and Technology, 23(2), 287–295.
Folin, O., & Ciocalteu, V. (1927). On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73(2), 627–650.
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.
Rosli, N. L., Roslan, H., Omar, E. A., Mokhtar, N., Hapit, N. H. A., & Asem, N. (2016). Phytochemical analysis and antioxidant activities of Trigona apicalis propolis extract. AIP Conference Proceedings, 1791(December 2016).
Zarena, A. S., Manohar, B., & Udaya Sankar, K. (2012). Optimization of supercritical carbon dioxide extraction of xanthones from mangosteen pericarp by response surface methodology. Food and Bioprocess Technology, 5(4), 1181–1188.
Rochfort, S., Isbel, A., Ezernieks, V., Elkins, A., Vincent, D., Deseo, M. A., & Spangenberg, G. C. (2020). Utilisation of design of experiments approach to optimise supercritical fluid extraction of medicinal cannabis. Scientific Reports, 10(1), 1–7.
Kumoro, A. C., & Hasan, M. (2007). Supercritical carbon dioxide extraction of andrographolide from Andrographis paniculata: Effect of the solvent flow rate, pressure, and temperature. Chinese Journal of Chemical Engineering, 15(6), 877–883.
da Silva, R. P. F. F., Rocha-Santos, T. A. P., & Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. 76, 40–51.
Romano, R., Aiello, A., Meca, G., De Luca, L., Pizzolongo, F., & Masi, P. (2021). Recovery of bioactive compounds from walnut (Juglans regia L.) green husk by supercritical carbon dioxide extraction. 56(9), 4658–4668.
Reverchon, E., & De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids, 38(2), 146–166.
Budisa, N., & Schulze-Makuch, D. (2014). Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life, 4(3), 331–340.
Avilés-Betanzos, K. A., Scampicchio, M., Ferrentino, G., Ramírez-Sucre, M. O., & Rodríguez-Buenfil, I. M. (2023). Capsicum chinense polyphenols extraction by supercritical fluids using response surface methodology (RSM). Processes, 11(7).
Týskiewicz, K., Konkol, M., & Rój, E. (2018). The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules, 23(10).
Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. Journal of Supercritical Fluids, 131(June 2017), 99–105.
Hossein Zadeh, J., Özdikicierler, O., & Pazır, F. (2022). A comparative study on response surface optimization of supercritical fluid extraction parameters to obtain Portulaca oleracea seed oil with higher bioactive content and antioxidant activity than solvent extraction. 125(2).
Pellicanò, T. M., Sicari, V., Loizzo, M. R., Leporini, M., Falco, T., & Poiana, M. (2020). Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Science and Technology (Brazil), 40(3), 692–697.
Gopalan, H. K., Md Hanafiah, N. F., Chean Ring, L., Tan, W.-N., Wahidin, S., Hway, T. S., & Yenn, T. W. (2019). Chemical composition and antimicrobial efficiency of Swietenia macrophylla seed extract on clinical.
de Oliveira, N. A., Mazzali, M. R., Fukumasu, H., Gonçalves, C. B., & Oliveira, A. L. de. (2019). Composition and physical properties of babassu seed (Orbignya phalerata) oil obtained by supercritical CO2 extraction. Journal of Supercritical Fluids, 150, 21–29.
Barboza, J. N., da Silva Maia Bezerra Filho, C., Silva, R. O., Medeiros, J. V. R., & de Sousa, D. P. (2018). An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxidative Medicine and Cellular Longevity, 2018.
Teng, H., & Chen, L. (2017). α-Glucosidase and α-amylase inhibitors from seed oil: A review of liposoluble substances to treat diabetes. Critical Reviews in Food Science and Nutrition, 57(16), 3438–3448.
Csepregi, K., Neugart, S., Schreiner, M., & Hideg, É. (2016). Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules, 21(2), 1–17.
Yu, L. (2001). Free radical scavenging properties of conjugated linoleic acids. Journal of Agricultural and Food Chemistry, 49(7), 3452–3456.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nur Syuhaida binti Adenan, Nurizzati Mohd Daud, Liza Md Salleh, Mariani Abdul Hamid

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.