Graph Theoretical Approach to Topological Features of Zeolitic Tetrahedral Imidazolate Framework-3

Authors

  • Abdelli Fathi Special Interest Group on Modeling and Data Analytics (SIGMDA), Faculty of Computer Science and Computer, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • Tony Augustine Viswajyothi College of Engineering and Technology, Vazhakulam-686670 Kerala, India
  • Mohamad Nazri Husin Special Interest Group on Modeling and Data Analytics, Faculty of Computer Science and Mathematical, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • J. Sahaya Vijay Department of Mathematics, Vellore Institute of Technology, Vellore 632014, India
  • Jain Maria Thomas Department of Chemistry, St. Georg20e's College, Aruvithura, Kerala 686122, India
  • Santiago Roy Department of Mathematics, Vellore Institute of Technology, Vellore 632014, India

DOI:

https://doi.org/10.11113/mjfas.v21n2.4127

Keywords:

Zeolitic Tetrahedral Imidazolate, edge partition, molecular descriptors, structural-properties, topological indices.

Abstract

A subclass of metal-organic frameworks (MOFs) known as zeolitic imidazolate frameworks (ZIFs) has drawn a lot of interest because of its capacity to create useful materials via thermal processing. Their capacity to transport electrons and respond to light is improved by this change, which makes them attractive options for photocatalytic uses. When ZIFs are thermally treated, they can be combined to create composites, heterostructures with other semiconductors, or materials with enhanced redox, charge-transfer, and light-capturing capabilities. Due to the dearth of theoretical characterisation predictions in the literature, we concentrate on tetrahedral imidazolate framework-3 (TIF-3), a well-known family of ZIFs, in this work. We fill this gap by using topological indices to reduce the intricacy of TIF-3's two-dimensional structure and methodically list all of its characteristics. Lastly, by establishing a statistical link with the TIF-3 features obtained through experimentation, we validate these attributes.

References

Verma, C., Quraishi, M. A., & Hussain, C. M. (2023). Greenly synthesized zeolites as sustainable materials for corrosion protection: Design, technology and application. Advances in Colloid and Interface Science, 314, 102868.

Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191.

Kumar, A., Rana, S., Sharma, G., Dhiman, P., Shekh, M. I., & Stadler, F. J. (2023). Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production. Journal of Environmental Chemical Engineering, 11(5), 110770.

Kouser, S., Hezam, A., Khadri, M. N., & Khanum, S. A. (2022). A review on zeolite imidazole frameworks: Synthesis, properties, and applications. Journal of Porous Materials, 29(3), 663–681.

Fu, F., Zheng, B., Xie, L. H., Du, H., Du, S., & Dong, Z. (2018). Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Crystals, 8(10), 367.

Bouëssel du Bourg, L., Ortiz, A. U., Boutin, A., & Coudert, F. X. (2014). Thermal and mechanical stability of zeolitic imidazolate frameworks polymorphs. APL Materials, 2(12).

Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., & Yaghi, O. M. (2010). Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.

Tao, W., Xianhui, B., Jian, Z., & Pingyun, F. (2008). New zeolitic imidazolate frameworks: From unprecedented assembly of cubic clusters to ordered cooperative organization of complementary ligand. Chemistry of Materials, 20, 7377–7382.

Zhao, X., Wu, T., Zheng, S. T., Wang, L., Bu, X., & Feng, P. (2011). A zeolitic porous lithium–organic framework constructed from cubane clusters. Chemical Communications, 47(19), 5536–5538.

Jahanbani, A. (2020). On topological indices of carbon nanocones and nanotori. International Journal of Quantum Chemistry, 120(6).

Wiener, H. (1947). Structural determination of paraffin boiling points. Journal of the American Chemical Society, 69(1), 17–20.

Mhagama, L. S., Nadeem, M. F., & Husin, M. N. (2024). On the edge metric dimension of some classes of cacti. AIMS Mathematics, 9(6), 16422–16435.

Rafiullah, M., Dur-E-Jabeen, & Husin, M. N. (2024). Some mathematical properties of sombor indices for regular graphs. Malaysian Journal of Fundamental and Applied Sciences, 20(6), 1392–1397.

Fathi, A., Sahaua, V. J., Husin, M. N., & Augustine, T. (2024). Valency-based molecular descriptor on structural property relationship of Ni tetrathiafulvalene tetrathionate. Malaysian Journal of Fundamental and Applied Sciences, 20(6), 1398–1409.

Gowtham, K. J., Husin, M. N., & Siddiqui, M. K. (2024). Some new bounds on the modified symmetric division deg index. Malaysian Journal of Mathematical Sciences, 18(1), 39–50.

Trinajstic, N. (1992). Chemical graph theory. CRC Press.

Todeschini, R., & Consonni, V. (2000). Handbook of molecular descriptors. Wiley-VCH.

Nadeem, M., Ahmad, S., Siddiqui, M. K., & Naeem, M. (2019). Topological descriptor of 2-dimensional silicon carbons and their applications. Open Chemistry, 17(1), 1473–1482.

Rada, J. (2020). Vertex-degree based topological indices of graphene. Polycyclic Aromatic Compounds, 42(4), 1524–1532.

Saleem, H., Husin, M. H., Ali, S., Hameed, M. S., & Ahmad, Z. (2024). Topology of edge contracted Möbius ladder: Indices and dimension. Malaysian Journal of Fundamental and Applied Sciences, 20(4), 739–758.

Gowtham, K. J., & Husin, M. N. (2023). A study of families of bistar and corona product of graph: Reverse topological indices. Malaysian Journal of Mathematical Sciences, 17(4), 575–586.

Husin, M. N., & Saudi, N. H. A. M. (2024). Investigation of Zagreb indices and Zagreb coindices of line graphs implementing subdivision process. AIP Conference Proceedings, 2905(1), 030002. https://doi.org/10.1063/5.0172141

Husin, M. N., Khan, A. R., Awan, N. U. H., Campena, F. J. H., Tchier, F., & Hussain, S. (2024). Multicriteria decision making attributes and estimation of physicochemical properties of kidney cancer drugs via topological descriptor. PLOS ONE, 19(5), e0302276. https://doi.org/10.1371/journal.pone.0302276

Rada, J., & Cruz, R. (2014). Vertex-degree-based topological indices over graphs. MATCH Communications in Mathematical and in Computer Chemistry, 72, 603–616.

Vijay, J. S., Roy, S., Beromeo, B. C., Husin, M. N., Augustine, T., Gobithaasan, R. U., & Easuraja, M. (2023). Topological properties and entropy calculations of aluminophosphates. Mathematics, 11, 2443.

Zuo, X., Shooshtari, H., & Cancan, M. (2023). Entropy measures of topological indices based molecular structure of benzenoid systems. Polycyclic Aromatic Compounds, 44(5), 2980–2990.

Husin, M. N., Hasni, R., & Arif, N. E. (2015). Zagreb polynomials of some nanostar dendrimers. Journal of Computational and Theoretical Nanoscience, 12(11), 4297–4300.

Gao, W., Husin, M. N., Farahani, M. R., & Imran, M. (2016). On the edges version of atom-bond connectivity and geometric arithmetic indices of nanocones CNCκ[n]. Journal of Computational and Theoretical Nanoscience, 13(10), 6741–6746.

Dehmer, M., & Mowshowitz, A. (2011). A history of graph entropy measures. Information Sciences, 181(1), 57–78.

Sol, R. V., & Valverde, S. I. (2004). Information theory of complex networks: On evolution and architectural constraints. Lecture Notes in Physics, 650, 189–207.

Yu, G., Siddiqui, M. K., & Hussain, M. (2024). On topological indices and entropy measures of beryllonitrene network via logarithmic regression model. Scientific Reports, 14, 7187.

Lal, S., Bhat, V. K., & Sharma, S. (2024). Topological indices and graph entropies for carbon nanotube Y-junctions. Journal of Mathematical Chemistry, 62, 73–108.

Rahul, M. P., Clement, J., Junias, J. S., Arockiaraj, M., & Balasubramanian, K. (2022). Degree-based entropies of graphene, graphyne and graphdiyne using Shannon’s approach. Journal of Molecular Structure.

Ghani, M. U., Campena, F. J. H., Pattabiraman, K., Ismail, R., Karamti, H., & Husin, M. N. (2023). Valency-based indices for some succinct drugs by using M-polynomial. Symmetry, 15, 603.

Downloads

Published

23-04-2025