Phytochemical Analysis of Citrus grandis (Tubtim Siam) Leaves and Peels Extracts and Their Biological Potential
DOI:
https://doi.org/10.11113/mjfas.v21n3.4119Keywords:
Citrus grandis, phytochemicals, phenolic compounds, antioxidant activity, GC-MS analysis.Abstract
Pomelo (Citrus grandis) is renowned for its sweet, tangy flavor, with the Tubtim Siam cultivar being especially popular in Thailand for its vibrant reddish-pink flesh. While citrus leaves and peels are typically discarded, they may contain valuable bioactive compounds. This research examines the phytochemical profile, antioxidant, antimicrobial, and anticancer properties of C. grandis (Tubtim Siam) extracts obtained from its leaves and peels. Phytochemical screening revealed the presence of alkaloids, flavonoids, terpenoids, and coumarins in all extracts, with coumarins absent in the water extract of leaves (LE) and anthraquinones undetected in all samples. The antioxidant activity, evaluated through the DPPH radical scavenging assay, revealed that the ethanolic peel extract (PE) exhibited the strongest antioxidant potential (IC50 0.532 ± 0.02 mg/mL), correlating with high levels of total phenolics (96.71 ± 2.04 mg GAE/g) and flavonoids (958.06 ± 63.28 mg QE/g). The extracts exhibited limited antimicrobial and anticancer effects. GC-MS analysis of the PE extract identified 22 bioactive compounds, including naringenin (21.37%), meranzin hydrate (11.17%), isoauraptene (5.39%), D-limonene (2.01%), and elemicin (1.64%). Notably, this study identified six compounds newly reported in Tubtim Siam extracts through GC-MS analysis, including 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one, 4-(1-aminoethyl)phenol, limonene glycol, p-methoxytodadiol, 4-(1E)-3-hydroxy-1-propenyl-2-methoxyphenol, and N-(4-methoxyphenethyl)-benzamide. These findings highlight the potential of C. grandis as a valuable reservoir of biologically active compounds, supporting its therapeutic applications and emphasizing the need for further research into its bioactive properties.
References
Mallik, S., Paria, B., Firdous, S. M., Ghazzawy, H. S., Alqahtani, N. K., He, Y., Li, X., & Gouda, M. M. (2024). The positive implication of natural antioxidants on oxidative stress-mediated diabetes mellitus complications. Journal of Genetic Engineering and Biotechnology, 22(4), 100424. https://doi.org/10.1016/j.jgeb.2024.100424
Zahra, M., Abrahamse, H., & George, B. P. (2024). Flavonoids: Antioxidant powerhouses and their role in nanomedicine. Antioxidants, 13(8), 922. https://doi.org/10.3390/antiox13080922
Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Ali Shah, S. A., Khatib, A., Mukhtar, S., Alsharif, M. A., Parveen, H., & Zakaria, Z. A. (2022). Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 27(4), 1149. https://doi.org/10.3390/molecules27041149
Lu, X., Zhao, C., Shi, H., Liao, Y., Xu, F., Du, H., Xiao, H., & Zheng, J. (2023). Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 63(14), 2018–2041. https://doi.org/10.1080/10408398.2021.1969891
Tsai, M. L., Lin, C. D., Khoo, K. A., Wang, M. Y., Kuan, T. K., Lin, W. C., Zhang, Y. N., & Wang, Y. Y. (2017). Composition and bioactivity of essential oil from Citrus grandis (L.) Osbeck 'Mato Peiyu' Leaf. Molecules, 22(12), 2154. https://doi.org/10.3390/molecules22122154
Anmol, R. J., Marium, S., Hiew, F. T., Han, W. C., Kwan, L. K., Wong, A. K. Y., Khan, F., Sarker, M. M. R., Chan, S. Y., Kifli, N., & Ming, L. C. (2021). Phytochemical and therapeutic potential of Citrus grandis (L.) Osbeck: A review. Journal of Evidence-Based Integrative Medicine, 26, 2515690X211043741. https://doi.org/10.1177/2515690X211043741
Tocmo, R., Pena-Fronteras, J., Calumba, K. F., Mendoza, M., & Johnson, J. J. (2020). Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1969–2012. https://doi.org/10.1111/1541-4337.12561
Li, G., Cheng, Y., Zhang, T., Li, Y., Han, L., & Liang, G. (2021). Characterization of oxygenated heterocyclic compounds and in vitro antioxidant activity of pomelo essential oil. Drug Design, Development and Therapy, 15, 937–947. https://doi.org/10.2147/DDDT.S299678
Ali, M. Y., Rumpa, N. N., Paul, S., Hossen, M. S., Tanvir, E. M., Hossan, T., Saha, M., Alam, N., Karim, N., Khalil, M. I., & Gan, S. H. (2019). Antioxidant potential, subacute toxicity, and beneficiary effects of methanolic extract of pomelo (Citrus grandis L. Osbeck) in long evan rats. Journal of Toxicology, 2019, 2529569. https://doi.org/10.1155/2019/2529569
Mokbel, M. S., & Hashinaga, F. (2006). Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chemistry, 94(4), 529–534. https://doi.org/10.1016/j.foodchem.2004.11.042
Phetkul, U., Vongkul, A., Chaichan, K., Paosen, S., Voravuthikunchai, S. P., Daus, M., & Maungchanburi, S. (2024). Isolation and structural elucidation of coumarin and flavonoids from Citrus grandis Linn. (Tubtim Siam Pomelo) and their biological activities. Trends in Sciences, 21(2), 7129. https://doi.org/10.48048/tis.2024.7129
Ou, M. C., Liu, Y. H., Sun, Y. W., & Chan, C. F. (2015). The composition, antioxidant and antibacterial activities of cold-pressed and distilled essential oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evidence-Based Complementary and Alternative Medicine, 2015, 804091. https://doi.org/10.1155/2015/804091
Pichaiyongvongdee, S., Rattanapun, B., & Haruenkit, R. (2014). Total polyphenol content and antioxidant properties in different tissues of seven pomelo (Citrus Grandis (L.) Osbeck) cultivars. Agriculture and Natural Resources, 48(6), 989–996.
Naradisorn, M., & Ruenkum, A. (2009). Preliminary study on antimicrobial activity of crude extracts of pomelo albedo against Colletotrichum gloeosporioides. Asian Journal of Food and Agro-Industry, 2(3), 1–5.
Buachan, P., Chularojmontri, L., & Wattanapitayakul, S. K. (2014). Selected activities of Citrus Maxima Merr. fruits on human endothelial cells: Enhancing cell migration and delaying cellular aging. Nutrients, 6(4), 1618–1634. https://doi.org/10.3390/nu6041618
Mäkynen, K., Jitsaardkul, S., Tachasamran, P., Sakai, N., Puranachoti, S., Nirojsinlapachai, N., Chattapat, V., Caengprasath, N., Ngamukote, S., & Adisakwattana, S. (2013). Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis (L.) Osbeck) in Thailand. Food Chemistry, 139(1-4), 735–743. https://doi.org/10.1016/j.foodchem.2013.02.017
Balmori, V., Marnpae, M., Chusak, C., Kamonsuwan, K., Katelakha, K., Charoensiddhi, S., & Adisakwattana, S. (2023). Enhancing phytochemical compounds, functional properties, and volatile flavor profiles of pomelo (Citrus grandis (L.) Osbeck) juices from different cultivars through fermentation with Lacticaseibacillus paracasei. Foods, 12(23), 4278. https://doi.org/10.3390/foods12234278
Godghate, A. G., & Sawant, R. S. (2014). Phytochemical analysis of leaves of Tectona grandis Linn. International Journal of Pharma and Bio Sciences, 5(1), 355–359.
Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4), 350–356. https://doi.org/10.26574/maedica.2019.14.4.350
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. https://doi.org/10.5344/ajev.1965.16.3.144
Biju, J., Sulaiman, C. T., Satheesh, G., & Reddy, V. R. K. (2014). Total phenolics and flavonoids in selected medicinal plants from Kerala. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1), 406–408.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
Clinical and Laboratory Standards Institute. (2002). Reference method for broth dilution antimicrobial susceptibility tests for bacteria that grow aerobically (4th ed.; M7-A4). Author.
Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtiter plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4), 321–324. https://doi.org/10.1016/j.ymeth.2007.01.006
Maungchanburi, S., Chaithada, P., Rattanaburi, S., Pinsrithong, S., Raungrut, P., Mukem, S., & Phetkul, U. (2024). Antiproliferative activity and GC-MS analysis from the leaves extract of different cultivars Carica papaya. ASEAN Journal of Science and Technology Reports, 27(6), e254526. https://doi.org/10.55164/ajstr.v27i6.254526
Abudayeh, Z. H., Al-Khalifa, I. I., Mohammed, S. M., & Ahmad, A. A. (2019). Phytochemical content and antioxidant activities of pomelo peel extract. Pharmacognosy Research, 11(3), 244–248.
Sapkota, B., & Jain, V. (2021). Evaluation of anti-ulcer activity of Citrus maxima (brum.) leaves extract in experimental animals. Journal of Clinical and Experimental Pharmacology, 11(2), 1–6.
Xi, W., Fang, B., Zhao, Q., Jiao, B., & Zhou, Z. (2014). Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck) varieties. Food Chemistry, 161, 230–238. https://doi.org/10.1016/j.foodchem.2014.04.001
Nogata, Y., Ohta, H., Yoza, K. I., Berhow, M., & Hasegawa, S. (1994). High-performance liquid chromatographic determination of naturally occurring flavonoids in citrus with a photodiode-array detector. Journal of Chromatography A, 667(1-2), 59–66. https://doi.org/10.1016/0021-9673(94)89051-X
Zhao, Y. L., Yang, X. W., Wu, B. F., Shang, J. H., Liu, Y. P., Zhi, D., & Luo, X. D. (2019). Anti-inflammatory effect of pomelo peel and its bioactive coumarins. Journal of Agricultural and Food Chemistry, 67(32), 8810–8818. https://doi.org/10.1021/acs.jafc.9b02511
Marnpae, M., Chusak, C., Balmori, V., Kamonsuwan, K., Dahlan, W., Nhujak, T., Hamid, N., & Adisakwattana, S. (2022). Probiotic Gac fruit beverage fermented with Lactobacillus paracasei: Physiochemical properties, phytochemicals, antioxidant activities, functional properties, and volatile flavor compounds. LWT-Food Science and Technology, 169, 113986. https://doi.org/10.1016/j.lwt.2022.113986
Balmori, V., Marnpae, M., Chusak, C., Kamonsuwan, K., Katelakha, K., Charoensiddhi, S., & Adisakwattana, S. (2023). Enhancing phytochemical compounds, functional properties, and volatile flavor profiles of pomelo (Citrus grandis (L.) Osbeck) juices from different cultivars through fermentation with Lacticaseibacillus paracasei. Foods, 12(23), 4278. https://doi.org/10.3390/foods12234278
Ding, X., Guo, L., Zhang, Y., Fan, S., Gu, M., Lu, Y., Jiang, D., Li, Y., Huang, C., & Zhou, Z. (2013). Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in C57BL/6 mice through activating the PPARα and GLUT4 pathway. PLoS One, 8(10), e77915. https://doi.org/10.1371/journal.pone.0077915
Toh, J. J., Khoo, H., & Azrina, A. (2013). Comparison of antioxidant properties of pomelo [Citrus grandis (L) Osbeck] varieties. International Food Research Journal, 20(4), 1661–1668.
Chang, S., & Azrina, A. (2017). Antioxidant content and activity in different parts of pomelo [Citrus grandis (L.) Osbeck] by-products. Acta Horticulturae, 1152, 27–34. https://doi.org/10.17660/ActaHortic.2017.1152.4
Nishad, J., Singh, S. P., Singh, S., Saha, S., Dubey, A. K., Varghese, E., & Kaur, C. (2018). Bioactive compounds and antioxidant activity of selected Indian pummelo (Citrus grandis L. Osbeck) germplasm. Scientia Horticulturae, 233, 446–454. https://doi.org/10.1016/j.scienta.2018.01.024
Jain, A., Ornelas-Paz, J. J., Obenland, D., Rodriguez (Friscia), K., & Prakash, A. (2017). Effect of phytosanitary irradiation on the quality of two varieties of pummelos (Citrus maxima (Burm.) Merr.). Scientia Horticulturae, 217, 36–47. https://doi.org/10.1016/j.scienta.2017.01.029
Chooklin, C. S., & Chooklin, S. (2021). Optimized extraction of total phenolic compounds from 'Tubtim Siam' Pummelo peel using ultrasonic technique and response surface methodology. ASEAN Journal of Scientific and Technological Reports, 24(1), 61–70.
Jiang, J., Shan, L., Chen, Z., Xu, H., Wang, J., Liu, Y., & Xiong, Y. (2014). Evaluation of antioxidant-associated efficacy of flavonoid extracts from a traditional Chinese medicine Hua Ju Hong (peels of Citrus grandis (L.) Osbeck). Journal of Ethnopharmacology, 158(Pt A), 325–330. https://doi.org/10.1016/j.jep.2014.10.040
Sajid, A., Sarfraz, R. A., Hanif, M. A., & Shahid, M. (2016). Evaluation of chemical composition and biological activities of Citrus pseudolimon and Citrus grandis peel essential oils. Journal of the Chemical Society of Pakistan, 38(2), 266–276.
Tao, N. G., & Liu, Y. J. (2012). Chemical composition and antimicrobial activity of the essential oil from the peel of Shatian Pummelo (Citrus Grandis Osbeck). International Journal of Food Properties, 15(3), 709–716. https://doi.org/10.1080/10942912.2010.500067
Saeb, S., Amin, M., Gooybari, R. S., & Aghel, N. (2016). Evaluation of antibacterial activities of Citrus limon, Citrus reticulata, and Citrus grandis against pathogenic bacteria. International Journal of Enteric Pathogens, 4(4), 11–15. https://doi.org/10.15171/ijep.2016.13
Ezeabara, C. A., & Dikeh, R. C. (2019). Evaluation of phytochemical composition and in vitro antimicrobial activity of various parts of Citrus grandis Osbeck. Pharmacophore, 10(5), 23–28.
Vans, D. M., Fang, J., Silvers, T., Delosh, R., Laudeman, J., Ogle, C., Reinhart, R., Selby, M., Bowles, L., Connelly, J., Harris, E., Krushkal, J., Rubinstein, L., Doroshow, J. H., & Teicher, B. A. (2019). Exposure time versus cytotoxicity for anticancer agents. Cancer Chemotherapy and Pharmacology, 84(2), 359–371. https://doi.org/10.1007/s00280-019-03863-w
Chirandorn, T., Khongthong, S., Roekngam, N., Chaichan, K., Maungchanburi, S., & Phetkul, U. (2025). Antioxidant and anticancer activities of Manihot esculenta Crantz peels extracts and its phytochemical analysis by GC-MS. Natural Resources for Human Health, 5(1), 106–115. https://doi.org/10.53365/nrfhh/196490
Choudhary, A., Kumar, V., Kumar, S., Majid, I., Aggarwal, P., & Suri, S. (2020). 5-Hydroxymethylfurfural (HMF) formation, occurrence and potential health concerns: Recent developments. Toxin Reviews, 39(4), 318–334. https://doi.org/10.1080/15569543.2020.1756857
Wei, Q. Z., Liu, G. X., Zhang, C. L., Sun, J. T., & Zhang, Y. Q. (2022). Identification of characteristic volatile compounds and prediction of fermentation degree of pomelo wine using partial least squares regression. LWT-Food Science and Technology, 154, 112830. https://doi.org/10.1016/j.lwt.2021.112830
Tocmo, R., Pena-Fronteras, J., Calumba, K. F., Mendoza, M., & Johnson, J. J. (2020). Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1969–2012. https://doi.org/10.1111/1541-4337.12561
Cai, J., Wen, H., Zhou, H., Zhang, D., Lan, D., Liu, S., Li, C., Dai, X., Song, T., Wang, X., He, Y., He, Z., Tan, J., & Zhang, J. (2023). Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomedicine & Pharmacotherapy, 164, 114990. https://doi.org/10.1016/j.biopha.2023.114990
Stabrauskiene, J., Kopustinskiene, D. M., Lazauskas, R., & Bernatoniene, J. (2022). Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines, 10(7), 1686. https://doi.org/10.3390/biomedicines10071686
Badhe, P., Nanaware, V., Badhe, A., Wondmie, G. F., Bin Jardan, Y. A., & Bourhia, M. (2024). Assessing the antioxidant properties of Naringin and Rutin and investigating their oxidative DNA damage effects in breast cancer. Scientific Reports, 14, 15314. https://doi.org/10.1038/s41598-024-15425-3
Patel, D. K., & Patel, K. (2022). Biological importance and pharmacological activities of meranzin and meranzin hydrate against human disorders. Current Chinese Chemistry, 2(3), e240522205185. https://doi.org/10.2174/2666001602666220524140540
Bhattacharjya, D. K., Pujirahayu, N., Suzuki, T., & Katayama, T. (2020). Chemical constituents of whole fruit of Citrus macroptera and their antioxidant activity. Journal of the Forest Biomass Utilization Society, 15(2), 29–38.
Anandakumar, P., Kamaraj, S., & Vanitha, M. K. (2021). D-limonene: A multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), e13566. https://doi.org/10.1111/jfbc.13566
Yu, X., Lin, H., Wang, Y., Lv, W., Zhang, S., Qian, Y., Deng, X., Feng, N., Yu, H., & Qian, B. (2018). D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer. OncoTargets and Therapy, 11, 1833–1847. https://doi.org/10.2147/OTT.S155716
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Uraiwan Phetkul, Thitikorn Prombanchong, Kewalee Chaichan, Saowanee Maungchanburi, Supakit Paosen, Supayang Voravuthikunchai

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.