Understanding Acute Hemolytic Anemia Severity Through Computational Analysis of G6PDChatham Variant: Designing a New Activator as a Potential Drug
DOI:
https://doi.org/10.11113/mjfas.v20n6.3876Keywords:
C6PDChatham, molecular dynamic simulation, molecular docking, acute hemolytic anemia, computer-aided drug design.Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDD) is a major enzymatic disease affecting human red blood cells (RBCs), causing hemolytic anemia due to the diminish of the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) synthesis and altered redox balance within erythrocytes. This study sought to correct the defect in G6PDChatham (Ala355Thr) caused by the loss of interactions (hydrogen bonds and salt bridges) by docking the AG1 molecule at the dimer interface, thus restoring these lost interactions. The enzyme conformation was then analyzed before and after AG1 binding using molecular dynamics simulation (MDS). The reasons behind the severity of acute hemolytic anemia (AHA) were explained using several parameters, such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), hydrogen bonds, salt bridges, radius of gyration (Rg), solvent accessible surface area (SASA), and covariance matrix analysis. Structural alterations in G6PDChatham, including the absence of interactions in a key region of the variant structure, can significantly impact protein stability and function, subsequently contributing to disease severity. Upon AG1 binding, these missing interactions were resorted to correct the structural defect of the variant. This restoration improves dimer stability and restores G6PD function. To develop new G6PD activators, several new analogues (SY7, SY8, SY9, and SY10) were rationally developed by substituting the linker region of the AG1 structure with other functional groups using the Avogadro software. These compounds were successfully synthesized and docked with G6PDChatham where the best binding affinity ranged between -8.0 and -9.1 kcal/mol. SY8, a promising G6PD activator, is predicted to be easily metabolized and excreted, making it less likely to cause toxicity. Its high drug score, drug-likeness, and favorable safety profile make it a strong candidate for synthesis and cellular testing. The toxicity risk assessment supported the overall drug score, increasing confidence in finding additional small-molecule activators for G6PDD disorder. Amidst the absence of effective treatments, such discovery hopes to improve the lives of those with AHA by assisting the development of appropriate pharmaceuticals for G6PDD.
References
Helegbe, G. K., et al. (2023). Co-occurrence of G6PD deficiency and SCT among pregnant women exposed to infectious diseases. Journal of Clinical Medicine, 12(15), 1–14. https://doi.org/10.3390/jcm12155085
Wei, H., et al. (2023). Simultaneous detection of G6PD mutations using SNPscan in a multiethnic minority area of Southwestern China. Frontiers in Genetics, 13, 1–10. https://doi.org/10.3389/fgene.2022.1000290
Gandomani, M. G., Khatami, S. R., Nezhad, S. R. K., Daneshmand, S., & Mashayekhi, A. (2011). Molecular identification of G6PD Chatham (G1003A) in Khuzestan Province of Iran. Journal of Genetics, 90(1), 143–145. https://doi.org/10.1007/s12041-011-0024-7
Liang, H. F., et al. (2023). Molecular epidemiological investigation of G6PD deficiency in Yangjiang region, western Guangdong province. Frontiers in Genetics, 14, 1–7. https://doi.org/10.3389/fgene.2023.1345537
Notaro, R., Afolayan, A., & Luzzatto, L. (2000). Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history. FASEB Journal, 14(3), 485–490. https://doi.org/10.1096/fasebj.14.3.485
Roper, D., et al. (2020). Laboratory diagnosis of G6PD deficiency: A British Society for Haematology guideline. British Journal of Haematology, 1–15. https://doi.org/10.1111/bjh.16366
Policy, M., & Group, A. (2022). Technical consultation to review the classification of glucose-6-phosphate dehydrogenase (G6PD). Malaria Policy Advisory Group meeting. World Health Organization Malaria Policy Advisory Group Meeting, 20.
Malik, S., Zaied, R., Syed, N., Jithesh, P., & Al-Shafai, M. (2021). Seven novel glucose-6-phosphate dehydrogenase (G6PD) deficiency variants identified in the Qatari population. Human Genomics, 15(1), 1–10. https://doi.org/10.1186/s40246-021-00358-9
Doss, C. G. P., et al. (2016). Genetic epidemiology of glucose-6-phosphate dehydrogenase deficiency in the Arab world. Scientific Reports, 1–11. https://doi.org/10.1038/srep37284
Haloui, S., et al. (2016). Molecular identification of Gd A- and Gd B-G6PD deficient variants by ARMS-PCR in a Tunisian population. Annales de Biologie Clinique (Paris), 72(2), 219–226. https://doi.org/10.1684/abc.2016.1123
Gómez-Manzo, S., et al. (2015). Mutations of glucose-6-phosphate dehydrogenase Durham, Santa-Maria, and A+ variants are associated with loss of functional and structural stability of the protein. International Journal of Molecular Sciences, 16(12), 28657–28668. https://doi.org/10.3390/ijms161226124
Martínez-Rosas, V., et al. (2020). Effects of single and double mutants in human glucose-6-phosphate dehydrogenase variants present in the Mexican population: Biochemical and structural analysis. International Journal of Molecular Sciences, 21(8). https://doi.org/10.3390/ijms21082732
Zhou, X., Qiang, Z., Zhang, S., Zhou, Y., Xiao, Q., & Tan, G. (2024). Evaluating the relationship between clinical G6PD enzyme activity and gene variants. PeerJ, 12, 1–11. https://doi.org/10.7717/peerj.16554
Siderius, M., & Jagodzinski, F. (2018). Mutation sensitivity maps: Identifying residue substitutions that impact protein structure via a rigidity analysis in silico mutation approach. Journal of Computational Biology, 25(1), 89–102. https://doi.org/10.1089/cmb.2017.0165
Siler, U., et al. (2017). Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. Journal of Allergy and Clinical Immunology, 139(1), 212–219.e3. https://doi.org/10.1016/j.jaci.2016.04.041
Alakbaree, M., et al. (2023). G6PD deficiency: Exploring the relationship with different medical disorders. Journal of Contemporary Medical Sciences, 9(5). https://doi.org/10.22317/jcms.v9i5.1433
Luzzatto, L., Ally, M., & Notaro, R. (2021). Glucose-6-phosphate dehydrogenase deficiency. Blood, 136(11), 1225–1240. https://doi.org/10.1182/blood.2019000944
Raub, A. G., et al. (2019). Small-molecule activators of glucose-6-phosphate dehydrogenase (G6PD) bridging the dimer interface. ChemMedChem, 14(14), 1321–1324. https://doi.org/10.1002/cmdc.201900341
Alakbaree, M., et al. (2023). A computational study of structural analysis of Class I human glucose-6-phosphate dehydrogenase (G6PD) variants: Elaborating the correlation to chronic non-spherocytic hemolytic anemia (CNSHA). Computational Biology and Chemistry, 104. https://doi.org/10.1016/j.compbiolchem.2023.107873
Salman, M. M., Al-Obaidi, Z., Kitchen, P., Loreto, A., Bill, R. M., & Wade-Martins, R. (2021). Advances in applying computer-aided drug design for neurodegenerative diseases. International Journal of Molecular Sciences, 22(9).
Pathak, R. K., Singh, D. B., Sagar, M., Baunthiyal, M., & Kumar, A. (2020). Computational approaches in drug discovery and design. In Computational Drug Design (pp. 1–21). https://doi.org/10.1007/978-981-15-6815-2_1
Opo, F. A. D. M., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure-based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-83626-x
Sams-Dodd, F. (2005). Target-based drug discovery: Is something wrong? Drug Discovery Today, 10(2), 139–147. https://doi.org/10.1016/S1359-6446(04)03316-1
Fiorelli, G., & Martinez, F. (2000). Chronic non-spherocytic haemolytic disorders associated with glucose-6-phosphate dehydrogenase variants. British Journal of Haematology, 13(1), 39–55. https://doi.org/10.1053/beha.1999.0056
Rani, S., Malik, F. P., Anwar, J., & Paracha, R. Z. (2022). Investigating the effect of mutation on structure and function of G6PD enzyme: A comparative molecular dynamics simulation study. PeerJ. https://doi.org/10.7717/peerj.12984
Alakbaree, M., et al. (2022). Construction of a complete human glucose-6-phosphate dehydrogenase dimer structure bound to glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate cofactors using molecular docking approach. In AIP Conference Proceedings, 2394. https://doi.org/10.1063/5.0121720
Stanzione, F., Giangreco, I., & Cole, J. C. (2021). Use of molecular docking computational tools in drug discovery (1st ed., Vol. 60). Elsevier B.V. https://doi.org/10.1016/bs.pmch.2021.01.004
Wang, J., Cao, D., Tang, C., Chen, X., Sun, H., & Hou, T. (2020). Fast and accurate prediction of partial charges using atom-path-descriptor-based machine learning. Bioinformatics, 1–8. https://doi.org/10.1093/bioinformatics/btaa566
Adeniji, S. E., Arthur, D. E., Abdullahi, M., & Haruna, A. (2020). Quantitative structure–activity relationship model, molecular docking simulation and computational design of some novel compounds against DNA gyrase receptor. Chemistry Africa, 3(2), 391–408. https://doi.org/10.1007/s42250-020-00132-9
Baba Muh’d, M., Uzairu, A., Shallangwa, G. A., & Uba, S. (2020). Molecular docking and quantitative structure-activity relationship study of anti-ulcer activity of quinazolinone derivatives. Journal of King Saud University - Science, 32(1), 657–666. https://doi.org/10.1016/j.jksus.2018.10.003
O’Boyle, E. H. Jr., Humphrey, R. H., Pollack, J. M., Hawver, T. H., & Story, P. A. (2011). The relation between emotional intelligence and job performance: A meta‐analysis. Journal of Organizational Behavior, 32(5), 788–818.
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry.
Roy, K., Kar, S., & Das, R. N. (2015). Other related techniques. https://doi.org/10.1016/b978-0-12-801505-6.00010-7
Jokhakar, P. H., Kalaria, R., & Patel, H. K. (2020). In silico docking studies of antimalarial drug hydroxychloroquine to SARS-CoV proteins: An emerging pandemic worldwide. https://doi.org/10.26434/chemrxiv.12488804.v1
Abraham, M., Hess, B., van der Spoel, D., & Lindahl, E. (2015). Gromacs 5.0.7. SpringerReference. https://doi.org/10.1007/SpringerReference_28001
Schmid, N., et al. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
Singh, V., Dhankhar, P., Dalal, V., Tomar, S., & Kumar, P. (2022). In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. Journal of Molecular Graphics and Modelling, 116, 108262. https://doi.org/10.1016/j.jmgm.2022.108262
Kaushik, S., Rameshwari, R., & Chapadgaonkar, S. S. (2024). The in-silico study of the structural changes in the Arthrobacter globiformis choline oxidase induced by high temperature. Journal of Genetic Engineering and Biotechnology, 22(1), 100348. https://doi.org/10.1016/j.jgeb.2023.100348
Kumar, H., & Maiti, P. K. (2011). Introduction to molecular dynamics simulation. pp. 161–197. https://doi.org/10.1007/978-93-86279-50-7_6
Alamri, M. A., ul Qamar, M. T., Afzal, O., Alabbas, A. B., Riadi, Y., & Alqahtani, S. M. (2021). Discovery of anti-MERS-CoV small covalent inhibitors through pharmacophore modeling, covalent docking, and molecular dynamics simulation. Journal of Molecular Liquids, 330, 115699.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8). https://doi.org/10.1186/1758-2946-4-17
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
Bhal, S. K. (2007). Log P — Making sense of the value. Advances in Chemical Development, 1–4. www.acdlabs.com/logp
Minucci, A., Moradkhani, K., Jing, M., Zuppi, C., Giardina, B., & Capoluongo, E. (2012). Blood cells, molecules, and diseases glucose-6-phosphate dehydrogenase (G6PD) mutations database: Review of the ‘old’ and update of the new mutations. Blood Cells, Molecules, and Diseases, 48(3), 154–165. https://doi.org/10.1016/j.bcmd.2012.01.001
Sirdah, M., et al. (2012). Molecular heterogeneity of glucose-6-phosphate dehydrogenase deficiency in Gaza Strip Palestinians. Blood Cells, Molecules, and Diseases, 49(3–4), 152–158. https://doi.org/10.1016/j.bcmd.2012.06.003
Čalyševa, J., & Vihinen, M. (2017). PON-SC - program for identifying steric clashes caused by amino acid substitutions. BMC Bioinformatics, 18(1), 1–8. https://doi.org/10.1186/s12859-017-1947-7
Alakbaree, M., et al. (2022). Human G6PD variant structural studies: Elucidating the molecular basis of human G6PD deficiency. Gene Reports, 27. https://doi.org/10.1016/j.genrep.2022.101634
Doering, J. A., et al. (2018). In silico site-directed mutagenesis informs species-specific predictions of chemical susceptibility derived from the sequence alignment to predict across species susceptibility (SeqAPASS) tool. Toxicological Sciences, 166(1), 131–145. https://doi.org/10.1093/toxsci/kfy186
Studio, D., & . (2008). Discovery Studio Life Science Modeling and Simulations. ResearchGate. https://www.researchgate.net/profile/Tanweer_Alam8/post/hi_can_somebody_plz_tell_me_how_to_import_a_database_into_Discovery_Studio_for_a_3D_database_search/attachment/59d63bb879197b8077998bbd/AS%3A412232203685889%401475295224962/download/ds-overview-20.pd
Lemkul, J. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
Praoparotai, A., Junkree, T., Imwong, M., & Boonyuen, U. (2020). Functional and structural analysis of double and triple mutants reveals the contribution of protein instability to clinical manifestations of G6PD variants. International Journal of Biological Macromolecules, 158, 884–893. https://doi.org/10.1016/j.ijbiomac.2020.05.026
Kumar, A., & Purohit, R. (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One, 8(5), 1–10. https://doi.org/10.1371/journal.pone.0064364
Sukumar, S., Mukherjee, M. B., Colah, R. B., & Mohanty, D. (2003). Molecular characterization of G6PD Insuli — a novel 989 CGC 3 CAC (330 Arg 3 His) mutation in the Indian population. Molecular Medicine, 30, 246–247. https://doi.org/10.1016/S1079-9796(03)00018-4
Au, S. W. N., Gover, S., Lam, V. M. S., & Adams, M. J. (2000). Human glucose-6-phosphate dehydrogenase: The crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency. Structure, 8(3), 293–303. https://doi.org/10.1016/S0969-2126(00)00104-0
Kumar, S., & Nussinov, R. (1999). Salt bridge stability in monomeric proteins. Journal of Molecular Biology, 293(5), 1241–1255. https://doi.org/10.1006/jmbi.1999.3218
Li, Z., et al. (2023). Genotypic and phenotypic characterization of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Guangzhou, China. Human Genomics, 17(1), 1–11. https://doi.org/10.1186/s40246-023-00473-9
Sen Gupta, P. S., Mondal, S., Mondal, B., Ul Islam, R. N., Banerjee, S., & Bandyopadhyay, A. K. (2014). SBION: A program for analyses of salt-bridges from multiple structure files. Bioinformation, 10(3), 164–166. https://doi.org/10.6026/97320630010164
Kumar, C. V., Swetha, R. G., Ramaiah, S., & Anbarasu, A. (2015). Tryptophan to glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein. Journal of Biomolecular Structure and Dynamics, 33(8), 1695–1709. https://doi.org/10.1080/07391102.2014.968211
Joshi, T., Joshi, T., Sharma, P., Chandra, S., & Pande, V. (2020). Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. Journal of Molecular Graphics and Modelling. https://doi.org/10.1080/07391102.2020.1719200
Rampadarath, A., Balogun, F. O., Pillay, C., & Sabiu, S. (2022). Identification of flavonoid C-glycosides as promising antidiabetics targeting protein tyrosine phosphatase 1B. Journal of Diabetes Research, 2022, 6233217. https://doi.org/10.1155/2022/6233217
Ghahremanian, S., Rashidi, M. M., Raeisi, K., & Toghraie, D. (2022). Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. Journal of Molecular Liquids, 354, 118901. https://doi.org/10.1016/j.molliq.2022.118901
Gómez-Manzo, S., et al. (2014). The stability of G6PD is affected by mutations with different clinical phenotypes. International Journal of Molecular Sciences, 15(11), 21179–21201. https://doi.org/10.3390/ijms151121179
Masson, P., & Lushchekina, S. (2022). Conformational stability and denaturation processes of proteins investigated by electrophoresis under extreme conditions. Molecules, 27(20). https://doi.org/10.3390/molecules27206861
Agrahari, A. K., Sneha, P., George Priya Doss, C., Siva, R., & Zayed, H. (2018). A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metabolic Brain Disease, 33(2), 589–600. https://doi.org/10.1007/s11011-017-0121-2
Ndagi, U., Mhlongo, N. N., & Soliman, M. E. (2017). The impact of Thr91 mutation on c-Src resistance to UM-164: Molecular dynamics study revealed a new opportunity for drug design. Molecular Biosystems, 13(6), 1157–1171. https://doi.org/10.1039/c6mb00848h
Drews, J. (2000). Drug discovery: A historical perspective. Science, 287(5460), 1960–1964. https://doi.org/10.1126/science.287.5460.1960
Okolo, E. N., et al. (2021). New chalcone derivatives as potential antimicrobial and antioxidant agents. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-01292-5
Sadgir, N. V., Adole, V. A., Dhonnar, S. L., & Jagdale, B. S. (2023). Synthesis and biological evaluation of coumarin appended thiazole hybrid heterocycles: Antibacterial and antifungal study. Journal of Molecular Structure, 1293, 136229. https://doi.org/10.1016/j.molstruc.2023.136229
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Maysaa Alakbaree, Mustapha Suleiman, Abbas Hashim Abdulsalam, Ahmed Al-Hili, Mohd Shahir Shamsir Omar, Farah Hasan Ali , Nurriza Ab Latif, Muaawia Ahmed Hamza , Syazwani Itri Amran
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.