Anti-inflammatory Activity of 1-Substituted Glyoxal β-Carboline Derivatives
DOI:
https://doi.org/10.11113/mjfas.v20n5.3630Keywords:
1-Substituted β-carboline, Activated glyoxal, L- Tryptophan, Anti-inflammatory, Xanthine oxidase (XO).Abstract
The anti-inflammatory properties of β-carbolines have been widely studied, highlighting their potential in treating inflammatory disorders. This research investigates the anti-inflammatory activity of selected 1-substituted glyoxal β-carboline derivatives, achieved through a one-step conversion of 5-hydroxy-L-tryptophan with activated glyoxal, without forming tetrahydro-β-carboline (THβC) intermediates. These derivatives (4e-g) were synthesized successfully without requiring expensive metal catalysts, prolonged reaction times, or stringent reaction conditions, and yielded moderate amounts. Our findings indicate that all the derivatives significantly inhibit xanthine oxidase (XO) activity, leading to a reduction in reactive oxygen species (ROS) and free radicals. This inhibition disrupts the inflammatory cascade and attenuates the inflammatory response.
References
Dai, J., Dan, W., Schneider, U., & Wang, J. (2018). β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. European Journal of Medicinal Chemistry, 157, 622–656.
Ashari, N. A. N., Pungot, N. H., Jani, N. A., & Shaameri, Z. (2022). Efficient synthesis of novel 1-substituted β-carboline derivatives via Pictet-Spengler cyclization of 5-hydroxy-L-tryptophan. Malaysian Journal of Fundamental and Applied Sciences, 18(2), 218–226.
Ash’ari, N. A. N., Pungot, N. H., Shaameri, Z., & Jani, N. A. (2021). A facile synthesis of n-alkylated daibucarboline A derivatives via Pictet-Spengler condensation of tryptamine. Malaysian Journal of Analytical Sciences, 25(5), 706–715.
Farzin, D., & Mansouri, N. (2006). Antidepressant-like effect of harmane and other β-carbolines in the mouse forced swim test. European Neuropsychopharmacology, 16(5), 324–328.
Zhou, S., Huang, G., & Chen, G. (2021). Synthesis and anti-tumor activity of marine alkaloids. Bioorganic & Medicinal Chemistry Letters, 41, 128009.
Nikam, T. D., Nitnaware, K. M., & Ahire, M. L. (2013). Alkaloids derived from tryptophan: Harmine and related alkaloids. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg, 553–574.
Mayser, P., Schäfer, U., Krämer, H. J., Irlinger, B., & Steglich, W. (2002). Pityriacitrin–an ultraviolet-absorbing indole alkaloid from the yeast Malassezia furfur. Archives of Dermatological Research, 294, 131–134.
Nagao, T., Adachi, K., Nishida, F., Nishishima, M., Mochida, K., Nagao, T., & Mochida, K. (1999). New ultraviolet-absorbing substance produced by marine bacteria and its production. JP Patent, 11, 269, 175.
Liew, L. P., Fleming, J. M., Longeon, A., Mouray, E., Florent, I., Bourguet-Kondracki, M. L., & Copp, B. R. (2014). Synthesis of 1-indolyl substituted β-carboline natural products and discovery of antimalarial and cytotoxic activities. Tetrahedron, 70(33), 4910–4920.
Almeida, M. C., Resende, D. I., da Costa, P. M., Pinto, M. M., & Sousa, E. (2021). Tryptophan derived natural marine alkaloids and synthetic derivatives as promising antimicrobial agents. European Journal of Medicinal Chemistry, 209, 112945.
Zhu, L. H., Chen, C., Wang, H., Ye, W. C., & Zhou, G. X. (2012). Indole alkaloids from Alocasia macrorrhiza. Chemical and Pharmaceutical Bulletin, 60(5), 670–673.
Zulkifli, S. Z., Pungot, N. H., Saaidin, A. S., Jani, N. A., & Mohammat, M. F. (2023). Synthesis and diverse biological activities of substituted indole β-carbolines: A review. Natural Product Research, 1–14.
Shamsujunaidi, R., Saaidin, A. S., Aziz, M. H. A., Mohammat, M. F., & Pungot, N. H. (2023). Studies on the synthesis of β-carboline and its derivatives as potential antimalarial drug components. Malaysian Journal of Analytical Sciences, 27(1), 44–53.
Kirsch, G., König, G. M., Wright, A. D., & Kaminsky, R. (2000). A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge Hyrtios cf. erecta. Journal of Natural Products, 63(6), 825–829.
Noro, T., Oda, Y., Miyase, T., Ueno, A., & Fukushima, S. (1983). Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chemical and Pharmaceutical Bulletin, 31(11), 3984–3987.
Ishibuchi, S., Morimoto, H., Oe, T., Ikebe, T., Inoue, H., Fukunari, A., et al. (2001). Synthesis and structure–activity relationships of 1-phenylpyrazoles as xanthine oxidase inhibitors. Bioorganic & Medicinal Chemistry Letters, 11(7), 879–882.
Kumar, B. K., Sekhar, K. V. G., Kunjiappan, S., Jamalis, J., Balaña-Fouce, R., & Sankaranarayanan, M. (2021). Recent update on the anti-infective potential of β-carboline analogs. Mini Reviews in Medicinal Chemistry, 21(4), 398–425.
Chelombitko, M. A. (2018). Role of reactive oxygen species in inflammation: A minireview. Moscow University Biological Sciences Bulletin, 73, 199–202.
Nakai, K., & Tsuruta, D. (2021). What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? International Journal of Molecular Sciences, 22(19), 10799.
Ayipo, Y. O., Mordi, M. N., Mustapha, M., & Damodaran, T. (2021). Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. European Journal of Pharmacology, 893, 173837.
Elbestawy, M. K., El-Sherbiny, G. M., Moghannem, S. A., & Farghal, E. E. (2023). Antibacterial, antibiofilm, and anti-inflammatory activities of ginger extract against Helicobacter pylori. Microbiology Research, 14(3), 1124–1138.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Siti Zafirah Zulkifli, Nur Ain Nabilah Asha'ari, Ahmad Fawwaz Aiman Aziz, Noor Hidayah Pungot
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.