Genus Zingiber: A Review on Botanical, Major Bioactivities and Genetic Diversity
DOI:
https://doi.org/10.11113/mjfas.v20n5.3553Keywords:
Zingiber, ginger, genetic diversity, bioactive compounds.Abstract
Zingiberaceae is a perennial plant family that is found across the tropics, particularly in Southeast Asia from low land to hill forests. In Peninsular Malaysia, it is believed that 160 ginger species are widely distributed belonging to 18 genera. Most of the Zingiber species in Peninsular Malaysia are less investigated and less understood taxonomically, thus remaining as under-utilized crops. The description of their morphologies in parallel with phytochemicals and molecular information are crucial to provide valuable information for further discovery of potent compounds, identification of potential new sources of genetic variation, as well as to provide insight into the domestication and breeding of ginger. The majority of Zingiber species are perennial herbs with a fragrant scent, an upright stem, and a fibrous rhizome. The presence of volatile components such as monoterpenoids, sesquiterpenes, sesquiterpenoids and some non-volatile compounds like gingerols, shagaols, and zingerone have contributed to the strong scent of the ginger oils. Among the dominant components of Zingiber are α-zingiberene, geranial, neral, camphene, neral, neric acid, α-curcumene, and zerumbone. The crude extracts and essential oils of Zingiber have proven to show some biological activities such as antimicrobial, anti-bacterial, insecticidal, larvicidal, anti-cancer, anti-inflammatory, anti-ulceration, antioxidant, anti-fungal, immunomodulatory, and anti-nociceptive. Most Zingiber species are known to have 22 somatic chromosomes (2n=22) which is the lowest among genera in Zingiberaceae. This study underscores the crucial significance of breeding programs and germplasm conservation, specifically emphasizing the potential of common ginger as a prominent contributor.
References
Barbosa, G. B., & Minguillan, J. M. O. (2021). Antioxidant activity and total phenolic content of fresh and cured rhizomes of Curcuma longa and Etlingera philippinensis. International Food Research Journal, 28(4), 839–847.
Al-Dhahli, A. S., Al-Hassani, F. A., Alarjani, K. M., Yehia, H. M., Al Lawati, W. M., Azmi, S. N. H., & Khan, S. A. (2020). Essential oil from the rhizomes of the Saudi and Chinese Zingiber officinale cultivars: Comparison of chemical composition, antibacterial and molecular docking studies. Journal of King Saud University-Science, 32(8), 3343–3350.
Vasanthi, H., & Parameswari, R. P. (2010). Indian spices for healthy heart—an overview. Current Cardiology Reviews, 6(4), 274–279.
Divakar, M. C., Al-Siyabi, A., Varghese, S. S., & Al Rubaie, M. (2016). The practice of ethnomedicine in the northern and southern provinces of Oman. Oman Medical Journal, 31(4), 245.
Sivasothy, Y., Chong, W. K., Hamid, A., Eldeen, I. M., Sulaiman, S. F., & Awang, K. (2011). Essential oils of Zingiber officinale var. rubrum Theilade and their antibacterial activities. Food Chemistry, 124(2), 514–517.
Liu, Y., Liu, J., & Zhang, Y. (2019). Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed Research International, 2019.
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185.
Mashhadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvishi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. International Journal of Preventive Medicine, 4(Suppl 1), S36.
Tohma, H., Gülçin, İ., Bursal, E., Gören, A. C., Alwasel, S. H., & Köksal, E. (2017). Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. Journal of Food Measurement and Characterization, 11, 556–566.
Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1), 48.
El-Ghorab, A. H., Nauman, M., Anjum, F. M., Hussain, S., & Nadeem, M. (2010). A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). Journal of Agricultural and Food Chemistry, 58(14), 8231–8237.
Ismail, N. A., Rafii, M. Y., Mahmud, T. M. M., Hanafi, M. M., & Miah, G. (2019). Genetic diversity of torch ginger (Etlingera elatior) germplasm revealed by ISSR and SSR markers. BioMed Research International, 2019.
Garrido-Cardenas, J. A., Mesa-Valle, C., & Manzano-Agugliaro, F. (2018). Trends in plant research using molecular markers. Planta, 247, 543–557.
Shukurova, M. K., Myint, D., Gilani, S. A., & Watanabe, K. N. (2020). Description of flower biology of under-exploited species, Zingiber barbatum (Wall.) from Myanmar. American Journal of Plant Sciences, 11(07), 1031.
Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P., & Kaushik, S. (2020). Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease, 31, 270–276.
Sirirugsa, P. (1999). Thai Zingiberaceae: Species diversity and their uses. Pure and Applied Chemistry, 70(11), 1–8.
Kress, W. J., Prince, L. M., & Williams, K. J. (2002). The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. American Journal of Botany, 89(10), 1682–1696.
Theilade, I. (1996). Revision of the genus Zingiber in Peninsular Malaysia.
Holttum, R. E. (1950). The Zingiberaceae of the Malay Peninsula.
Larsen, K., Ibrahim, H., Khaw, S. H., & Saw, L. G. (1999). Gingers of Peninsular Malaysia and Singapore.
Appalasamy, S., Arumugam, N., Boon, J. G., & Aweng, E. (2019). A short note on wild gingers (Zingiberaceae) in Pulau Pangkor, Perak, Peninsular Malaysia. The Malaysian Forester, 82(1), 159–162.
Appalasamy, S., Arumugam, N., Zamri, N. S. A., Fadhlina, A., Kumaran, J. V., & Subramaniam, S. (2022). First report on wild ginger (Family: Zingiberaceae) species composition with new records in limestone forests of Kelantan, Peninsular Malaysia. Tropical Life Sciences Research, 33(3), 33.
Burtt, B. L. (1972). General introduction to papers on Zingiberaceae. Edinburgh Royal Botanic Garden Notes.
Larsen, K. (1980). Annotated key to the genera of Zingiberaceae of Thailand. Natural History Bulletin of the Siam Society, 28, 151–169.
Li, D. M., Ye, Y. J., Xu, Y. C., Liu, J. M., & Zhu, G. F. (2020). Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses. PLoS ONE, 15(7), e0236590.
Aung, M. M. (2016). Taxonomic study of the genus Zingiber Mill. (Zingiberaceae) in Myanmar (Doctoral dissertation, Kochi University).
Schumann, K. (1904). Zingiberaceae. In A. Engler (Ed.), Das Pflanzenreich (Vol. 4/46, pp. 1–458). Engelmann.
Valeton, T. (1918). New notes on the Zingiberaceae of Java and Malaya. Bulletin of the Jardin Botanique Buitenzorg, Ser. II, 27, 1–166.
Ridley, H. N. (1924). The Flora of the Malay Peninsula: Monocotyledones (Vol. 4). L. Reeve & Company, Limited.
Theilade, I., & Maersk-Moller, M.-L. (1991). Taxonomic and palynological studies on Zingiber Boehm. in Thailand and West Malaysia (M.Sc. thesis, Aarhus University).
Larsen, K., Lock, J. M., Maas, H., & Maas, P. J. M. (1998). Zingiberaceae. In Flowering Plants: Monocotyledons: Alismatanae and Commelinanae (except Gramineae) (pp. 474–495). Springer Berlin Heidelberg.
Ibrahim, H., Khalid, N., & Hussin, K. (2007). Cultivated gingers of Peninsular Malaysia: Utilization profiles and micropropagation. The Gardens' Bulletin Singapore, 59(1-2), 71–88.
Kizhakkayil, J., & Sasikumar, B. (2011). Diversity, characterization and utilization of ginger: A review. Plant Genetic Resources, 9(3), 464–477.
Deng, M., Yun, X., Ren, S., Qing, Z., & Luo, F. (2022). Plants of the genus Zingiber: A review of their ethnomedicine, phytochemistry and pharmacology. Molecules, 27(9), 2826.
Aleem, M., Khan, M. I., Shakshaz, F. A., Akbari, N., & Anwar, D. (2020). Botany, phytochemistry and antimicrobial activity of ginger (Zingiber officinale): A review. International Journal of Herbal Medicine, 8(6), 36–49.
Zaid, A., Haw, X. R., Alkatib, H. H., Sasidharan, S., Marriott, P. J., & Wong, Y. F. (2022). Phytochemical constituents and antiproliferative activities of essential oils from four varieties of Malaysian Zingiber officinale Roscoe against human cervical cancer cell line. Plants, 11(10), 1280.
Supu, R. D., Diantini, A., & Levita, J. (2018). Red ginger (Zingiber officinale var. rubrum): Its chemical constituents, pharmacological activities and safety. Fitofarmaka Jurnal Ilmiah Farmasi, 8(1), 25–31.
Zhang, S., Kou, X., Zhao, H., Mak, K. K., Balijepalli, M. K., & Pichika, M. R. (2022). Zingiber officinale var. rubrum: Red ginger’s medicinal uses. Molecules, 27(3), 775.
Yob, N. J., Jofrry, S. M., Affandi, M. M. R., Teh, L. K., Salleh, M. Z., & Zakaria, Z. A. (2011). Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evidence-Based Complementary and Alternative Medicine, 2011.
Thurman, E. M. (2020). Analysis of terpenes in hemp (Cannabis sativa) by gas chromatography/mass spectrometry: Isomer identification analysis. In Comprehensive Analytical Chemistry (Vol. 90, pp. 197–233). Elsevier.
Singh, C. B., Manglembi, N., Swapana, N., & Chanu, S. B. (2015). Ethnobotany, phytochemistry and pharmacology of Zingiber cassumunar Roxb. (Zingiberaceae). Journal of Pharmacognosy and Phytochemistry, 4(1), 01–06.
Mektrirat, R., Yano, T., Okonogi, S., Katip, W., & Pikulkaew, S. (2020). Phytochemical and safety evaluations of volatile terpenoids from Zingiber cassumunar Roxb. on mature carp peripheral blood mononuclear cells and embryonic zebrafish. Molecules, 25(3), 613.
Höferl, M., Stoilova, I., Wanner, J., Schmidt, E., Jirovetz, L., Trifonova, D., et al. (2015). Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Natural Product Communications, 10(6), 1934578X1501000672.
Huong, L. T., Chung, N. T., Huong, T. T., Sam, L. N., Hung, N. H., Ogunwande, I. A., et al. (2020). Essential oils of Zingiber species from Vietnam: Chemical compositions and biological activities. Plants, 9(10), 1269.
Deleanu, M. A. R. I. A. N. A., Popa, E. E., & Popa, M. E. (2018). Chemical composition and active properties evaluation of wild oregano (Origanum vulgare) and ginger (Zingiber officinale - Roscoe) essential oils. Rev. Chim, 69, 1927–1933.
Bellik, Y. (2014). Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pacific Journal of Tropical Disease, 4(1), 40–44.
Sharifi-Rad, M., Varoni, E. M., Salehi, B., Sharifi-Rad, J., Matthews, K. R., Ayatollahi, S. A., et al. (2017). Plants of the genus Zingiber as a source of bioactive phytochemicals: From tradition to pharmacy. Molecules, 22(12), 2145.
Kamazeri, T. S. A. T., Abd Samah, O., Taher, M., Susanti, D., & Qaralleh, H. (2012). Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asian Pacific Journal of Tropical Medicine, 5(3), 202–209.
Peng, T. Y., Don, M. M., & Tahrel, M. A. (2012). Optimisation and kinetics studies on the extraction of essential oil from Zingiber cassumunar. Journal of Physical Science, 23(1), 65–82.
Mahardika, R. W., Ibrahim, H., Nurulhusna, A. H., & Awang, K. (2017). Efficacy of four species of Zingiberaceae extract against vectors of dengue, chikungunya and filariasis. Trop. Biomed, 34, 375–387.
Singletary, K. (2010). Ginger: An overview of health benefits. Nutrition Today, 45(4), 171–183.
Abdullahi, A., Khairulmazmi, A., Yasmeen, S., Ismail, I. S., Norhayu, A., Sulaiman, M. R., et al. (2020). Phytochemical profiling and antimicrobial activity of ginger (Zingiber officinale) essential oils against important phytopathogens. Arabian Journal of Chemistry, 13(11), 8012–8025.
Vairappan, C. S., Beng, O. J., Nagappan, T., Gobilik, J., & Ramachandram, T. (2012). Essential oil profiles at major populations of Zingiber officinale Rosc. utilized in Malaysia for traditional medicine. Journal of Tropical Biology & Conservation (JTBC), 9(2).
Malek, S. N. A., Ibrahim, H., Lai, H. S., Serm, L. G., Seng, C. K., Yusoff, M. M., & Ali, N. A. M. (2005). Essential oils of Zingiber ottensii Valet. and Zingiber zerumbet (L.) Sm. from Sabah, Malaysia. Malaysian Journal of Science, 24(1), 49–58.
Sirat, H. M., & Nordin, A. B. (1994). Essential oil of Zingiber ottensii Valeton. Journal of Essential Oil Research, 6(6), 635–636.
Omar, M. N., Razman, S., Nor-Nazuha, M. N., Nazreen, M. M., & Zuberdi, A. M. (2013). Supercritical fluid extraction (Sfe) of Malaysian wild ginger Zingiber puberulum inflorescence. Orient. J. Chem, 29, 89–92.
Sirat, H. M., & Leh, N. H. N. (2001). The rhizome oil of Zingiber spectabile Valet. Journal of Essential Oil Research, 13(4), 256–257.
Tan, J. W., Israf, D. A., & Tham, C. L. (2018). Major bioactive compounds in essential oils extracted from the rhizomes of Zingiber zerumbet (L) Smith: A mini-review on the anti-allergic and immunomodulatory properties. Frontiers in Pharmacology, 9, 356657.
Baby, S., Dan, M., Thaha, A. R., Johnson, A. J., Kurup, R., Balakrishnapillai, P., & Lim, C. K. (2009). High content of zerumbone in volatile oils of Zingiber zerumbet from southern India and Malaysia. Flavour and Fragrance Journal, 24(6), 301–308.
Sulaiman, M. R., Mohamad, T. A. S. T., Mossadeq, W. M. S., Moin, S., Yusof, M., Mokhtar, A. F., et al. (2010). Antinociceptive activity of the essential oil of Zingiber zerumbet. Planta Medica, 76(02), 107–112.
Akhtar, N. M. Y., Jantan, I., Arshad, L., & Haque, M. A. (2019). Standardized ethanol extract, essential oil and zerumbone of Zingiber zerumbet rhizome suppress phagocytic activity of human neutrophils. BMC Complementary and Alternative Medicine, 19, 1–12.
Abd Rashid, R., & Pihie, A. L. (2005). The antiproliferative effects of Zingiber zerumbet extracts and fractions on the growth of human breast carcinoma cell lines. Malaysian Journal of Pharmaceutical Sciences, 3(1), 45–52.
Azelan, N. A., Aziz, R., & Hasham, R. (2018). Optimisation of essential oil yield and zerumbone content in Zingiber zerumbet extract using hydrodistillation process. Chemical Engineering Transactions, 63, 595–600.
Burkill, I. H. (1966). A dictionary of the economic products of the Malay Peninsula.
Chaubey, M. K. (2013). Insecticidal effect of Allium sativum (Alliaceae) essential oil. Journal of Biologically Active Products from Nature, 3(4), 248–258.
Sharifah Sakinah, S. A., Tri Handayani, S., & Azimahtol Hawariah, L. P. (2007). Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio. Cancer Cell International, 7, 1–11.
Somchit, M. N., & Shukriyah, M. N. (2003). Anti-inflammatory property of ethanol and water extracts of Zingiber zerumbet. Indian Journal of Pharmacology, 35(3), 181–182.
Zakaria, Z. A., Mohamad, A. S., Ahmad, M. S., Mokhtar, A. F., Israf, D. A., Lajis, N. H., & Sulaiman, M. R. (2011). Preliminary analysis of the anti-inflammatory activity of essential oils of Zingiber zerumbet. Biological Research for Nursing, 13(4), 425–432.
Mascolo, N., Jain, R., Jain, S. C., & Capasso, F. (1989). Ethnopharmacologic investigation of ginger (Zingiber officinale). Journal of Ethnopharmacology, 27(1-2), 129–140.
Agrawal, A. K., Rao, C. V., Sairam, K., Joshi, V. K., & Goel, R. K. (2000). Effect of Piper longum Linn, Zingiber officianalis Linn and Ferula species on gastric ulceration and secretion in rats.
El-Baroty, G. S., Abd El-Baky, H. H., Farag, R. S., & Saleh, M. A. (2010). Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African Journal of Biochemistry Research, 4(6), 167–174.
Zhou, H. L., Deng, Y. M., & Xie, Q. M. (2006). The modulatory effects of the volatile oil of ginger on the cellular immune response in vitro and in vivo in mice. Journal of Ethnopharmacology, 105(1-2), 301–305.
Khalid, M. H., Akhtar, M. N., Mohamad, A. S., Perimal, E. K., Akira, A., Israf, D. A., et al. (2011). Antinociceptive effect of the essential oil of Zingiber zerumbet in mice: Possible mechanisms. Journal of Ethnopharmacology, 137(1), 345–351.
Echendu, T. N. C. (1991). Ginger, cashew and neem as surface protectants of cowpeas against infestation and damage by Callosobruchus maculatus.
Suthisut, D., Fields, P. G., & Chandrapatya, A. (2011). Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. Journal of Stored Products Research, 47(3), 222–230.
Ofuya, T. I., & Okuku, I. E. (1994). Insecticidal effect of some plant extracts on the cowpea aphid Aphis craccivora Koch (Homoptera: Aphididae). Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 67, 127–129.
Sahayaraj, K. (1998). Antifeedant effect of some plant extracts on the Asian armyworm, Spodoptera litura (Fabricius). Current Science, 523–525.
Agarwal, M., Walia, S., Dhingra, S., & Khambay, B. P. S. (2001). Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Management Science: Formerly Pesticide Science, 57(3), 289–300.
Babu, G. K., Dolma, S. K., Sharma, M., & Reddy, S. E. (2018). Chemical composition of essential oil and oleoresins of Zingiber officinale and toxicity of extracts/essential oil against diamondback moth (Plutella xylostella). Toxin Reviews.
Madegowda, B. H., Rameshwaran, P., Nagaraju, N. P., & Murthy, P. S. (2016). In-vitro mycological activity of essential oil from Zingiber zerumbet rhizomes. Journal of Essential Oil Research, 28(1), 81–88.
Rana, V. S., Ahluwalia, V., Shakil, N. A., & Prasad, L. (2017). Essential oil composition, antifungal, and seedling growth inhibitory effects of zerumbone from Zingiber zerumbet Smith. Journal of Essential Oil Research, 29, 320–329.
Ghasemzadeh, A., Jaafar, H. Z., Rahmat, A., & Swamy, M. K. (2017). Optimization of microwave-assisted extraction of zerumbone from Zingiber zerumbet L. rhizome and evaluation of antiproliferative activity of optimized extracts. Chemistry Central Journal, 11, 1–10.
Murakami, A., Takahashi, D., Kinoshita, T., Koshimizu, K., Kim, H. W., Yoshihiro, A., et al. (2002). Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: The α, β-unsaturated carbonyl group is a prerequisite. Carcinogenesis, 23(5), 795–802.
Jalil, M., Annuar, M. S. M., Tan, B. C., & Khalid, N. (2015). Effects of selected physicochemical parameters on zerumbone production of Zingiber zerumbet Smith cell suspension culture. Evidence-Based Complementary and Alternative Medicine, 2015.
Abdelwahab, S. I., Abdul, A. B., Devi, N., Taha, M. M. E., Al-Zubairi, A. S., Mohan, S., & Mariod, A. A. (2010). Regression of cervical intraepithelial neoplasia by zerumbone in female Balb/c mice prenatally exposed to diethylstilboestrol: Involvement of mitochondria-regulated apoptosis. Experimental and Toxicologic Pathology, 62(5), 461–469.
Rout, O. P., Acharya, R., & Mishra, S. K. (2011). In-vitro antioxidant potentials in leaves of Coleus aromaticus Benth and rhizomes of Zingiber zerumbet (L.) SM. Journal of Applied Pharmaceutical Science, (Issue), 194–198.
Kumar, S. S., Srinivas, P., Negi, P. S., & Bettadaiah, B. K. (2013). Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chemistry, 141(2), 1097–1103.
Murakami, A., Takahashi, M., Jiwajinda, S., Koshimizu, K., & Ohigashi, H. (1999). Identification of zerumbone in Zingiber zerumbet Smith as a potent inhibitor of 12-O-tetradecanoylphorbol-13-acetate-induced Epstein-Barr virus activation. Bioscience, Biotechnology, and Biochemistry, 63(10), 1811–1812.
Somchit, M. N., Shukriyah, M. H. N., Bustamam, A. A., & Zuraini, A. (2005). Anti-pyretic and analgesic activity of Zingiber zerumbet. International Journal of Pharmacology, 1(3), 277–280.
Tewtrakul, S., & Subhadhirasakul, S. (2007). Anti-allergic activity of some selected plants in the Zingiberaceae family. Journal of Ethnopharmacology, 109(3), 535–538.
Prakash, R. O., Rabinarayan, A., & Kumar, M. S. (2011). Zingiber zerumbet (L.) Sm., a reservoir plant for therapeutic uses: A review. International Journal of Research in Ayurveda and Pharmacy, 2, 1–22.
Bhuiyan, N. I., Chowdhury, J. U., & Begum, J. (2008). Volatile constituents of essential oils isolated from leaf and rhizome of Zingiber cassumunar Roxb. Bangladesh Journal of Pharmacology, 3(2), 69–73.
Tripathi, P., Dubey, N. K., & Shukla, A. K. (2008). Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World Journal of Microbiology and Biotechnology, 24, 39–46.
Jantan, I., Yassin, M. S. M., Chin, C. B., Chen, L. L., & Sim, N. L. (2003). Antifungal activity of the essential oils of nine Zingiberaceae species. Pharmaceutical Biology, 41(5), 392–397.
Chien, T. Y., Chen, L. G., Lee, C. J., Lee, F. Y., & Wang, C. C. (2008). Anti-inflammatory constituents of Zingiber zerumbet. Food Chemistry, 110(3), 584–589.
Xian, M., Ito, K., Nakazato, T., et al. (2007). Zerumbone, a bioactive sesquiterpene, induces G2/M cell cycle arrest and apoptosis in leukemia cells via a Fas- and mitochondria-mediated pathway. Cancer Science, 98, 118–126.
Murakami, A., Hayashi, R., Tanaka, T., Kwon, K. H., Ohigashi, H., & Safitri, R. (2003). Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: Separately and in combination. Biochemical Pharmacology, 66, 1253–1261.
Huang, G. C., Chien, T. Y., Chen, L. G., & Wang, C. C. (2005). Antitumor effects of zerumbone from Zingiber zerumbet in P-388D1 cells in vitro and in vivo. Planta Medica, 71, 219–224.
Dai, J. R., Cardellina, J. H., Mahon, J. B. M., & Boyd, M. R. (1997). Zerumbone, an HIV-inhibitory and cytotoxic sesquiterpene of Zingiber aromaticum and Z. zerumbet. Natural Product Letters, 10(2), 115–118.
Sugiura, T. (1928). Chromosome numbers in some higher plants I. Botanical Magazine, 42, 504–506.
Raghavan, T. S., & Venkatasubban, K. R. (1943, April). Cytological studies in the family Zingiberaceae with special reference to chromosome number and cyto-taxonomy. In Proceedings of the Indian Academy of Sciences-Section B (Vol. 17, pp. 118–132). Springer India.
Ramachandran, K. (1969). Chromosome number in Zingiberaceae. Cytologia, 34, 213–221.
Mahanty, H. K. (1970). A cytological study of Zingiberaceae with special reference to their taxonomy. Cytologia, 35, 13–49.
Eksomtramage, L., Sirirugsa, P., Jivanit, P., & Maknoi, C. (2002). Chromosome counts of some Zingiberaceous species from Thailand. Songklanakarin Journal of Science and Technology, 24(2), 311–319.
Rai, S., AB, D., & Das, P. (1997). Estimation of 4C DNA and karyotype analysis in ginger (Zingiber officinale Rosc.)-I. Cytologia, 62(2), 133–141.
Chakravorti, A. K. (1948). Multiplication of chromosome numbers in relation to speciation in Zingiberaceae. Science Culture, 14, 137–140.
Bidyaleima, L., Kishor, R., & Sharma, G. J. (2019). Chromosome numbers, RAPD and ISSR profiles of six Zingiber species found in Manipur, India. Biodiversitas Journal of Biological Diversity, 20(5).
Wang, H. (2020). Introductory chapter: Studies on ginger. In Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials.
Govindaraj, M., Vetriventhan, M., & Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015.
Idrees, M., & Irshad, M. (2014). Molecular markers in plants for analysis of genetic diversity: A review. European Academic Research, 2(1), 1513–1540.
Amiteye, S. (2021). Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon, 7(10).
Sharma, K. S., Rao, S. R., & Shamurailatpam, A. (2010). DNA based molecular markers: Concept, techniques and comparison. Advances in Applied Biotechnology, 1–22.
Marwal, A., & Gaur, R. K. (2020). Molecular markers: Tool for genetic analysis. In Animal Biotechnology (pp. 353–372). Academic Press.
Vijayan, K., Nair, C. V., Kar, P. K., Mohandas, T. P., Saratchandra, B., & Raje, U. S. (2005). Genetic variability within and among three ecoraces of the tasar silkworm Antheraea mylitta Drury, as revealed by ISSR and RAPD markers. International Journal of Industrial Entomology, 10(1), 51–59.
Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. D. F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39, 312–328.
Ahmad, A., Wang, J. D., Pan, Y. B., Sharif, R., & Gao, S. J. (2018). Development and use of simple sequence repeats (SSRs) markers for sugarcane breeding and genetic studies. Agronomy, 8(11), 260.
Denomme, G. A., Rios, M., & Reid, M. E. (2000). Molecular protocols in transfusion medicine. Elsevier.
Detrich, H. W., Westerfield, M., & Zon, L. I. (Eds.). (2011). The zebrafish: Genetics, genomics and informatics (Vol. 135). Academic Press.
Dhingani, R. M., Umrania, V. V., Tomar, R. S., Parakhia, M. V., & Golakiya, B. (2015). Introduction to QTL mapping in plants. Annals of Plant Science, 4(04), 1072–1079.
Foster, J. T., Bull, R. L., & Keim, P. (2020). Ricin forensics: Comparisons to microbial forensics. In Microbial Forensics (pp. 241–250). Academic Press.
Bohmann, K., Evans, A., Gilbert, M. T. P., et al. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology and Evolution, 29, 358–367.
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., et al. (2018). DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment, 32(2), 261–285.
Jin, H. J., Jung, S., DebRoy, A. R., & Davuluri, R. V. (2016). Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer. Oncotarget, 7(34), 54616.
Boregowda, M. H. (2021). Silkworm genomics: Current status and limitations. In Advances in Animal Genomics (pp. 259–280). Academic Press.
Singh, H. R., & Hazarika, P. (2020). Biotechnological approaches for tea improvement. In Biotechnological Progress and Beverage Consumption (pp. 111–148). Academic Press.
Fogher, C., Busconi, M., Sebastiani, L., & Bracci, T. (2010). Olive genomics. In Olives and Olive Oil in Health and Disease Prevention (pp. 17–24). Academic Press.
Kiran, U., Khan, S., Mirza, K. J., Ram, M., & Abdin, M. Z. (2010). SCAR markers: A potential tool for authentication of herbal drugs. Fitoterapia, 81(8), 969–976.
Sharma, M., & Singh, A. (2021). DNA based molecular markers in plant varietal identification: A review. Plant Archives, 21(1), 1973–1980.
Sushma, S., Shanmugam, V., Singh, B. G., Neelam, T., Sapna, T., Priyanka, T., et al. (2019). Genetic diversity and phylogenetic profiling of Fusarium sp., the causing storage rot of ginger (Zingiber officinale) in Himachal Pradesh and their potential environmental eco-friendly management strategies. Research Journal of Biotechnology, 14, 5.
Dash, B., Ray, A., Sahoo, A., Kar, B., Chatterjee, T., Halder, T., et al. (2019). A combined approach using ISSR and volatile compound analysis for assessment of genetic and phytochemical diversity in Zingiber zerumbet (L.) from Eastern India. Journal of Essential Oil Bearing Plants, 22(1), 31–49.
Shivakumar, N. (2019). Biotechnology and crop improvement of ginger (Zingiber officinale Rosc.). In Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials (p. 25). IntechOpen.
George, N. M., Raghav, S. B., & Prasath, D. (2022). Direct in vitro regeneration of medicinally important Indian and exotic red-colored ginger (Zingiber officinale Rosc.) and genetic fidelity assessment using ISSR and SSR markers. In Vitro Cellular & Developmental Biology-Plant, 58(4), 551–558.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Fatin Arina Zoni Fasli, Nur Syamim Syahirah Mat Hussin, Farah Ayuni Farinordin, Mohd Razik Midin, Najway Mohammed Ahmed Qareerah, Sideena Ateeyah Sulayman Ahmeedah, Raihana Ridzuan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.