Implications of Seasonal Ecophysiological Changes under Rubber-Based Intercropping Practices on Latex Production and Technological Properties of Hevea Rubber
DOI:
https://doi.org/10.11113/mjfas.v21n3.3447Keywords:
Hevea brasiliensis, leaf area index, latex biochemical composition, latex Mg content, molecular weight characteristics, rheological properties, soil moisture content.Abstract
Rubber-based intercropping is a recommended practice due to its ecological and economic benefits. Understanding the implications of ecophysiological changes in intercropping farms on the production and technological properties of Hevea rubber is still necessary. This study investigated the effects of seasonal changes in the leaf area index (LAI) and soil moisture content (SMC) of rubber-based intercropping farms (RBIFs) on the latex biochemical composition, yield, and technological properties of Hevea rubber. Three RBIFs: rubber-bamboo (RB); rubber-melinjo (RM); rubber-coffee (RC), and one rubber monocropping farm (RR) were selected in a village in southern Thailand. Data were collected from September to December 2020 (S1), January to April 2021 (S2), and May to August 2021 (S3). Over the study period, RB, RM, and RC exhibited significantly high LAI values of 1.2, 1.05, and 0.99, respectively, whereas RR had a low LAI of 0.79. The increasing SMC with soil depths was pronounced in all RBIFs. RB and RM expressed less physiological stress and delivered latex yield, which was on average 40% higher than that of RR. With higher molecular weight distributions, their rheological properties were comparable to those of RR. However, the latex Mg content of RB and RM significantly increased to 660 and 742 mg/kg, respectively, in S2. Their dry rubbers had an ash content of more than 0.6% in S3.
References
Malmonge, J. A., Camillo, E. C., Moreno, R. M. B., Mattaso, L. H. C., & McMahon, C. M. (2009). Comparative study on the technological properties of latex and natural rubber from Hancornia speciosa Gomes and Hevea brasiliensis. Journal of Applied Polymer Science, 111, 2986–2991. http://doi.org/10.1002/app.29316
Honorato, L., Dias, M. L., Azuma, C., & Nunes, R. C. R. (2016). Rheological properties and curing features of natural rubber compositions filled with fluoromica ME100. Polimeros, 26. http://doi.org/10.1590/0104-1428.2352
Roux, Y. L., Ehabe, E., Saint-Beuve, J., Nkengafac, J., Nkeng, J., Ngolemasango, F., & Gobina, S. (2000). Seasonal and clonal variation in the latex and raw rubber of Hevea brasiliensis. Journal of Rubber Research, 3, 142–156.
Zhu, J., Qi, J., Fang, Y., Xiao, X., Li, J., Lan, J., & Tang, C. (2018). Characterization of sugar contents and sucrose metabolizing enzymes in developing leaves of Hevea brasiliensis. Frontiers in Plant Science, 9, 58. http://doi.org/10.3389/fpls.2018.00058
Andriyana, Y., Thaler, P., Chiarawipa, R., & Sopharat, J. (2020). On-farm effect of bamboo intercropping on soil water content and root distribution in rubber tree plantation. Forests, Trees and Livelihoods, 29(4), 205–221.
Rappaport, D., & Montagnini, F. (2014). Tree species growth under a rubber (Hevea brasiliensis) plantation: Native restoration via enrichment planting in southern Bahia, Brazil. New Forests, 45, 715–732. http://doi.org/10.1007/s11056-014-9433-9
Giraldo-Vasquez, D. H., & Velasquez-Restrepo, S. M. (2017). Variation of technological properties of field natural rubber lattices from Hevea brasiliensis clones and natural rubber-based compounds. DYNA, 84, 80–87. http://doi.org/10.15446/dyna.v84n203.65689
Carr, M. K. V. (2012). The water relations of rubber (Hevea brasiliensis): A review. Experimental Agriculture, 48, 176–193. http://doi.org/10.1017/S0014479711000901
Wei, Y., Zhang, H., & Wu, L. (2017). A review on characterization of molecular structure of natural rubber. MOJ Polymer Science, 1, 197–199. http://doi.org/10.15406/mojps.2017.01.00032
Zhang, M., Yang, X. D., & Du, J. (2007). Soil organic carbon in pure rubber and tea-rubber plantations in South-western China. Journal of Tropical Ecology, 48, 201–207.
Chen, C., Liu, W., Jiang, X., & Wu, J. (2017). Effect of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: Implication for land use. Geoderma, 299, 13–24. http://doi.org/10.1016/j.geoderma.2017.03.021
Langenberger, G., Cadish, G., Martin, K., Min, S., & Waibel, H. (2017). Rubber intercropping: A viable concept for the 21st century? Agroforestry Systems, 91, 577–596. http://doi.org/10.1007/s10457-016-9961-8
Chen, C., Liu, W., Wu, J., Jiang, X., & Zhu, X. (2019). Can intercropping with the cash crop help improve the soil physico-chemical properties of rubber plantations? Geoderma, 335, 149–160. http://doi.org/10.1016/j.geoderma.2018.08.023
Zaw, Z. N., Chiarawipa, R., & Sdoodee, S. (2022). Hevea rubber physiological status and relationships under different rubber-based intercropping systems. Songklanakarin Journal of Science and Technology, 44, 6–12. http://doi.org/10.14456/sjst-psu.2022.2
Land Development Department. (2003). Characterization of established soil series in the Peninsular and Southeast Coast Region of Thailand reclassified according to soil taxonomy 2003. Land Development Department.
Bianchi, S., Cahalan, C., Hale, S., & Gibbons, J. M. (2017). Rapid assessment of forest canopy and light regime using smartphone hemispherical photography. Ecology and Evolution, 7, 10556–10566. http://doi.org/10.1002/ece3.3567
Obouayeba, S., Soumahin, E. F., Regis, L., Essehi, J. L., Gohet, E., & Obouayeba, A. P. (2021). Improvement of productivity of the moderate metabolism clone GT 1 of Hevea brasiliensis Muell. Arg. by early upward tapping in Cote d’Ivoire. American Journal of BioScience, 9, 25–33. http://doi.org/10.11648/j.ajbio.20210901.14
Rubber Research Institute of Malaysia. (2018). RRIM test methods for Standard Malaysia Rubbers: SMR Bulletin no. 7. Malaysian Rubber Board.
Agilent Technologies. (2015). An Introduction to Gel Permeation Chromatography and Size Exclusion Chromatography. Agilent Technologies.
Schenk, H. J. (2008). Soil depth, plant rooting strategies and species’ niches. New Phytologist, 178, 223–225. http://doi.org/10.1111/j.1469-8137.2008.02427.x
Mei, T., Fang, D., Roll, A., Niu, F., Hendrayanto, & Holscher, D. (2016). Water use patterns of four tropical bamboo species assessed with sap flux measurements. Frontiers in Plant Science, 6. http://doi.org/10.3389/fpls.2015.01202
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Anthony, S. (2009). Gnetum gnemon. Agroforest tree database: A tree reference and selection guide version 4.0. World Agroforestry.
van Noordwijk, M., & Purnomosidhi, P. (1995). Root architecture in relation to tree-soil-crop interactions and shoot pruning in agroforestry. In F. L. Sinclair (Ed.), Agroforestry: Science, Policy and Practice (pp. 161–173). Springer Science.
Bouttier, L., Paquette, A., Messier, C., Rivest, D., Olivier, A., & Cogliastro, A. (2014). Vertical root separation and light interception in a temperate tree-based intercropping system of Eastern Canada. Agroforestry Systems, 88, 693–706. http://doi.org/10.1007/s10457-014-9721-6
Bayala, J., & Prieto, I. (2020). Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant Soil, 453, 17–28. http://doi.org/10.1007/s11104-019-04173-z
Avila, R. T., Cardoso, A. A., de Almeida, W. L., Costa, L. C., Machado, K. L. G., Barbosa, M. L., … DaMatta, F. M. (2020). Coffee plants respond to drought and elevated [CO2] through changes in stomatal function, plant hydraulic conductance, and aquaporin expression. Environmental and Experimental Botany, 177, 104148. http://doi.org/10.1016/j.envexpbot.2020.104148
Chiarawipa, R., Suteekanjanothai, P., & Somboonsuke, B. (2021). Adaptive ecophysiological characteristics of leaves and root distribution of Robusta coffee saplings as affected by age of rubber trees under an intercropping system. Journal of Agricultural Science and Technology, 23(2), 387–402.
Atsin, G. J. O., Soumahin, E. F., Kouakou, T. H., Elabo, A. E. A., Okoma, K. M., & Obouayeba, S. (2016). Agronomic potential of some rubber tree clones (Hevea brasiliensis) of the fast metabolic activity class in the absence of hormonal stimulation in southwestern of Cote d’Ivoire. American Journal of Experimental Agriculture, 13(4), 1–13. http://doi.org/10.9734/AJEA/2016/26930
Chantuma, P., Lacote, R., Sonnarth, S., & Gohet, E. (2017). Effects of different tapping rest periods during wintering and summer months on dry rubber yield of Hevea brasiliensis in Thailand. Journal of Rubber Research, 20, 261–272.
Sreelatha, S., Simon, S. P., Kurup, G. M., & Vijayakumar, K. R. (2007). Biochemical mechanisms associated with low yield during stress in Hevea clone RRII 105. Journal of Rubber Research, 10, 107–115.
Sainoi, T., Sdoodee, S., Lacote, R., Gohet, E., & Chantuma, P. (2017). Stimulation affecting latex physiology and yield under low frequency tapping of rubber (Hevea brasiliensis) clone RRIM 600 in southern Thailand. Australian Journal of Crop Science, 11, 220–227. http://doi.org/10.21475/ajcs.17.11.02.p305
Puangmanee, S., Taweepreda, W., & Sdoodee, S. (2014). Effect of tapping method on natural rubber latex consistency. In Proceedings of the Sixth International Conference on Science, Technology and Innovation for Sustainable Well-Being (pp. 158–162).
Hauer-Jakli, M., & Trankneret, M. (2019). Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: A system review and meta-analysis from 70 years of research. Frontiers in Plant Science, 10, 766. http://doi.org/10.3389/fpls.2019.00766
Gerendas, J., & Fuhrs, H. (2013). The significance of magnesium for crop quality. Plant Soil, 368, 101–128. http://doi.org/10.1007/s11104-012-1555-2
Ahmed, N., Zhang, B., Bozdar, B., Chachar, S., Rai, M., Li, J., Li, Y., Hayat, F., Chachar, Z., & Tu, P. (2023). The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Frontiers in Plant Science, 14. http://doi.org/10.3389/fols.2023.1285512
Attanayake, A. P., Karunanayake, L., & Nilmini, A. H. R. L. (2018). Effect of ethephon stimulation on natural rubber latex properties; new insight into ethephon stimulation. Journal of the National Science Foundation of Sri Lanka, 46(2), 179–185. http://doi.org/10.4038/jnsfsr.v46i2.8418
Moreno, R. M. B., Ferreria, M., Foncalves, P. D. A., & Mattoso, L. H. C. (2005). Technological properties of latex and natural rubber of Hevea brasiliensis clones. Scientia Agricola, 62, 122–126. http://doi.org/10.1590/S0103-90162005000200005
Wang, M., Shem, Q. R., Xu, G. H., & Guo, A. W. (2014). New insight into the strategy for nitrogen metabolism in plant cells. International Review of Cell Molecular Biology, 310, 1–37. http://doi.org/10.1016/B978-0-12-800180-6.00001-3
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105, 1141–1157. http://doi.org/10.1093/aob/mcq028
Zhong, J. P., Li, C. P., Li, S. D., Kong, L. X., Yang, L., Liao, A. Q., & She, X. D. (2009). Study on the properties of natural rubber during maturation. Journal of Polymer Materials, 26, 351–360.
Babu, P. S. S., Gopalakrishnan, K. S., & Jacob, J. (2000). Technically specified rubber. In P. J. George & C. J. Kuruvilla (Eds.), Natural Rubber: Agromanagement and Crop Processing (pp. 434–478). Rubber Research Institute of India.
Thuong, N. T., Nghia, P. T., & Kawahara, S. (2018). Factors influencing green strength of commercial natural rubber. Journal of Green Processing and Synthesis, 7, 399–403. http://doi.org/10.1515/gps-2018-0019
Kawahara, S., Yoshinobu, I., Sakdapipanich, J. T., Tanaka, Y., & Eng, A. H. (2002). Effect of gel on the green strength of natural rubber. Rubber Chemistry and Technology, 75, 739. http://doi.org/10.5254/1.3544999
Cherian, S., Ryu, S. B., & Cornish, K. (2019). Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnology Journal, 17, 2041–2061. http://doi.org/10.1111/pbi.13181
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zar Ni Zaw, Rawee Chiarawipa, Sayan Sdoodee

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.