The Effects of Impurities on Discrete Nonlinear Schrödinger Equation

Authors

  • Anis Sulaikha Samiun Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Nor Amirah Busul Aklan Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Bakhram Umarov Physical-Technical Institute of the Uzbek Academy of Sciences, 2-b, Bodomzor str., 100084, Tashkent, Uzbekistan

DOI:

https://doi.org/10.11113/mjfas.v21n3.3417

Keywords:

Soliton, nonlinear Schrödinger equation, nonlinear equation, discrete system, partial differential equation.

Abstract

Understanding the effect that impurities may have on the soliton propagation process, particularly during the interaction process involving the Nonlinear Schrödinger Equation (NLSE), has become a major research focus in recent years. This paper studied the phenomenon of soliton scattering when it interacts with a localized impurity of the Delta potential under the discrete case of NLSE. Using an analytical approach, i.e., the variational approximation (VA) method, the equations of soliton parameters for the width, center-of-mass position, and linear and quadratic phase-front corrections are derived in order to describe the soliton evolutions throughout the scattering process. The VA method results were validated by the direct numerical simulation of the discrete NLSE, provided that the soliton is initially set at a distance from the Delta potential. When the nonlinearity was taken to be of the cubic and quintic types, it was shown that the soliton of the Discrete Cubic-Quintic NLSE could be either reflected or transmitted by the Delta potential with different potential strengths and a constant soliton’s initial velocity. The results suggested that the VA method is an effective and useful approach to investigate the scattering process of discrete NLSE in the presence of impurities.

References

Raja, A. S., Lange, S., Karpov, M., Shi, K., Fu, X., Behrendt, R., et al. (2021). Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nature Communications, 12(1), 5867.

Tsoy, E. N., & Umarov, B. A. (2018). Introduction to nonlinear discrete systems: Theory and modelling. European Journal of Physics, 39(5), 055803.

Boudjemâa, A., & Elhadj, K. M. (2023). Discrete quantum droplets in one-dimensional binary Bose–Einstein condensates. Chaos, Solitons & Fractals, 176, 114133.

Qi, W., Li, Z.-H., Cai, J.-T., Li, G.-Q., & Li, H.-F. (2018). Modulational instability and localized breather in discrete Schrödinger equation with helicoidal hopping and a power-law nonlinearity. Physics Letters A, 382(27), 1778–1786.

Chevizovich, D., Michieletto, D., Mvogo, A., Zakiryanov, F., & Zdravković, S. (2020). A review on nonlinear DNA physics. Royal Society Open Science, 7(11), 200774.

Yamgoué, S. B., Deffo, G. R., Tala-Tebue, E., & Pelap, F. B. (2018). Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice. Chinese Physics B, 27(12), 126303.

Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R., & Aitchison, J. S. (1998). Discrete spatial optical solitons in waveguide arrays. Physical Review Letters, 81(16), 3383–3386.

Kivshar, Y. S., & Campbell, D. K. (1993). Peierls–Nabarro potential barrier for highly localized nonlinear modes. Physical Review E, 48(4), 3077–3081.

Morandotti, R., Eisenberg, H. S., Mandelik, D., Silberberg, Y., Modotto, D., Sorel, M., Stanley, C. R., & Aitchison, J. S. (2003). Interactions of discrete solitons with structural defects. Optics Letters, 28(10), 834–836.

Brazhnyi, V. A., Jisha, C. P., & Rodrigues, A. S. (2013). Interaction of discrete nonlinear Schrödinger solitons with a linear lattice impurity. Physical Review A, 87(1), 013609.

Morales-Molina, L., & Vicencio, R. A. (2006). Trapping of discrete solitons by defects in nonlinear waveguide arrays. Optics Letters, 31(7), 966–968.

Sakaguchi, H., & Tamura, M. (2004). Scattering and trapping of nonlinear Schrödinger solitons in external potentials. Journal of the Physical Society of Japan, 73(3), 503–506.

Forinash, K., Peyrard, M., & Malomed, B. (1994). Interaction of discrete breathers with impurity modes. Physical Review E, 49(4), 3400–3411.

Goodman, R. H., Slusher, R. E., & Weinstein, M. I. (2002). Stopping light on a defect. Journal of the Optical Society of America B, 19(7), 1635–1652.

Palmero, F., Carretero-González, R., Cuevas, J., Kevrekidis, P. G., & Królikowski, W. (2008). Solitons in one-dimensional nonlinear Schrödinger lattices with a local inhomogeneity. Physical Review E, 77(3), 036614.

Aklan, N. A. B., & Umarov, B. A. (2015). The soliton scattering of the cubic-quintic nonlinear Schrödinger equation on the external potentials. AIP Conference Proceedings, 1682, 020022.

Aklan, N. A. B., & Umarov, B. A. (2017). The soliton interaction in weakly nonlocal nonlinear media on the external potentials. Journal of Physics: Conference Series, 819(1), 012024.

Aklan, N. A. B., Faizar, F. A., & Umarov, B. A. (2021). Interactions of soliton in weakly nonlocal nonlinear media. Journal of Physics: Conference Series, 1988(1), 012016.

Qausar, H., Ramli, M., Munzir, S., Syafwan, M., & Fadhiliani, D. (2021). Soliton solution of stationary discrete nonlinear Schrödinger equation with the cubic-quintic nonlinearity. IOP Conference Series: Materials Science and Engineering, 1087(1), 012083.

Umarov, B. A., Messikh, A., Regaa, N., & Baizakov, B. B. (2013). Variational analysis of soliton scattering by external potentials. Journal of Physics: Conference Series, 435(1), 012024.

Aklan, N. A. B., Husairi, N. F. I. M., Samiun, A. S., & Umarov, B. (2023). Dynamics of two-soliton molecule with impurities. Menemui Matematik (Discovering Mathematics), 45(1), 112–123.

Balakrishnan, V. (2003). All about the Dirac delta function. Resonance, 8(8), 48–58.

Al-Marzoug, S. M. (2014). Scattering of a discrete soliton by impurity in dipolar Bose–Einstein condensates. International Journal of Modern Physics B, 28(30), 1450214.

Anderson, D. (1983). Variational approach to nonlinear pulse propagation in optical fibers. Physical Review A, 27(6), 3135–3145.

Al-Marzoug, S. M., Al-Amoudi, S. M., Al Khawaja, U., Bahlouli, H., & Baizakov, B. B. (2011). Scattering of a matter-wave single soliton and a two-soliton molecule by an attractive potential. Physical Review E, 83(2).

Din, M. A. M., Umarov, B., Aklan, N. A. B., Hadi, M. S. A., & Ismail, N. H. (2020). Scattering of the vector soliton in coupled nonlinear Schrödinger equation with Gaussian potential. Malaysian Journal of Fundamental and Applied Sciences, 16(5), 500–504.

Balakin, A. A., Litvak, A. G., Mironov, V. A., & Skobelev, S. A. (2016). Collapse of the wave field in a one-dimensional system of weakly coupled light guides. Physical Review A, 94(6), 063806.

Litvak, A. G., Mironov, V. A., Skobelev, S. A., & Smirnov, L. A. (2018). Peculiarities of the self-action of inclined wave beams incident on a discrete system of optical fibers. Journal of Experimental and Theoretical Physics, 126(1), 21–34.

Downloads

Published

12-06-2025