Evaluation of Annona muricata Linn Leaves Extracts from Maceration and Ultrasonic-Assisted Methods for Anticancer Activity on HLFa Cells
DOI:
https://doi.org/10.11113/mjfas.v20n5.3400Keywords:
Annona muricata L., antioxidant, lung cancer, anticancer, non-small cell lung cancer, Soursop, Graviola.Abstract
Non-small cell lung cancer (NSCLC) is a deadly kind of cancer that contributes significantly to the global cancer mortality rate. It is distinguished by a significant level of malignancy and unfavourable prognosis. The molecular pathways responsible for tumour invasion and migration in NSCLC are not fully understood, despite their widespread occurrence and significant consequences. Moreover, the ability of cancer cells to withstand the effects of chemical treatments presents a substantial obstacle in the creation of successful treatment approaches for NSCLC. Annona muricata Linn (A. muricata) is known to possess powerful anticancer bioactive components. A. muricata extracts have demonstrated significant therapeutic potential among a wide range of botanical compounds. However, the specific molecular interactions of the plant have not yet been revealed. This study aims to evaluate the anticancer potential of A. muricata leaves extracts on the NSCLC cell line and compare the efficacy of two different extraction methods, namely maceration extraction (ME) and ultrasonic-assisted extraction (UAE). Results showed that ME demonstrated significantly higher antioxidant activity compared to UAE, with respective percentages of 81.4% and 29.4%. However, the UAE extract demonstrated more pronounced cytotoxic effects on the NSCLC cell line (HLFa) with an IC50 value of 139.6 µg/ml, indicating a stronger antiproliferative effect on cancer cell. Both ME and UAE extracts reduced nitrite release in HLFa cell supernatants, with the ME extract showing superior activity. Treatment with ME and UAE also resulted in the activation of Caspase3/7, indicating the induction of apoptosis in HLFa cells compared to the untreated control. The extracts and Cisplatin differ approximately 0.3-fold in caspase 3/7 activation though it was not statistically significant. This activation suggests that both extraction methods effectively initiate the apoptotic cascade which is crucial for the elimination of cancer cells. Furthermore, the UAE extract significantly reduced BCL-2 mRNA levels (p<0.05). The significant reduction in BCL-2, a protein that prevents apoptosis reflect the extract’ ability to modulate key apoptotic regulators with the most significant activity when UAE extracts were used. In summary, A.muricata leaves extracts obtained through both ME and UAE methods exhibited promising anticancer effects against NSCLC, with UAE extracts exhibiting superior activity. These findings pave the way for further investigations into the use of A.muricata in cancer treatment and the development of new therapeutic agents based on its properties.
References
Rodak, O., Peris-Díaz, M. D., Olbromski, M., Podhorska-Okołów, M., & Dzięgiel, P. (2021). Current landscape of non-small cell lung cancer: Epidemiology, histological classification, targeted therapies, and immunotherapy. Cancers, 13(18). https://doi.org/10.3390/cancers13184705
Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics. CA: A Cancer Journal for Clinicians, 67(1), 7–30. https://doi.org/10.3322/caac.21387
Travis, W. D., Brambilla, E., Nicholson, A. G., et al. (2015). The 2015 World Health Organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. Journal of Thoracic Oncology, 10(9), 1243–1260. https://doi.org/10.1097/JTO.0000000000000630
Singh, S. S., Mattheolabakis, G., Gu, X., Withers, S., Dahal, A., & Jois, S. D. (2021). A grafted peptidomimetic for EGFR heterodimerization inhibition: Implications in NSCLC models. European Journal of Medicinal Chemistry, 216, 113312. https://doi.org/10.1016/j.ejmech.2021.113312
Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H., & Kadir, H. A. (2015). Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences, 16(7), 15625–15658. https://doi.org/10.3390/ijms160715625
Peter, B., Bosze, S., & Horvath, R. (2017). Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCG): Review of recent advances from molecular mechanisms to nanomedicine and clinical trials. European Biophysics Journal, 46(1), 1–24. https://doi.org/10.1007/s00249-016-1141-2
Gullett, N. P., Ruhul Amin, A. R., Bayraktar, S., Pezzuto, J. M., Shin, D. M., Khuri, F. R., Aggarwal, B. B., Surh, Y. J., & Kucuk, O. (2010). Cancer prevention with natural compounds. Seminars in Oncology, 37(3), 258–281. https://doi.org/10.1053/j.seminoncol.2010.06.014
de Albuquerque, U. P., Soldati, G. T., Sieber, S. S., Ramos, M. A., de Sá, J. C., & de Souza, L. C. (2011). The use of plants in the medical system of the Fulni-ô people (NE Brazil): A perspective on age and gender. Journal of Ethnopharmacology, 133(2), 866–873. https://doi.org/10.1016/j.jep.2010.11.021
Camargo, E. E. S., Bandeira, M. A., & de Oliveira, A. G. (2011). Diagnosis of public programs focused on herbal medicines in Brazil. Natural Product Communications, 6(7), 1001–1002.
Komlaga, G., Agyare, C., Dickson, R. A., Mensah, M. L. K., Annan, K., Loiseau, P. M., Champy, P. R. (2015). Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti Region, Ghana. Journal of Ethnopharmacology, 172, 333–346. https://doi.org/10.1016/j.jep.2015.06.041
Gupta, S. C., Kim, J. H., Prasad, S., & Aggarwal, B. B. (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Reviews, 29(3), 405–434. https://doi.org/10.1007/s10555-010-9235-2
Ying, H., Yu, C., Chen, H., Zhang, H., Fang, J., Wu, F., & Yu, W. (2020). Quinonoids: Therapeutic potential for lung cancer treatment. Biomedical Research International, 2020, 1–13. https://doi.org/10.1155/2020/2460565
Sun, Y., Gong, C., Ni, Z., Hu, D., Ng, W., Zhu, X., Wang, L., Si, G., Yan, X., Zhao, C., Yao, C., & Zhu, S. (2021). Tanshinone IIA enhances susceptibility of non-small cell lung cancer cells to NK cell-mediated lysis by up-regulating ULBP1 and DR5. Journal of Leukocyte Biology, 110(2), 315–325. https://doi.org/10.1002/jlb.5ma1120-776rr
Rady, I., Bloch, M. B., Chamcheu, R. C., Banang Mbeumi, S., Anwar, M. R., Mohamed, H., Babatunde, A. S., Kuiate, J. R., Noubissi, F. K., El Sayed, K. A., Whitfield, G. K., & Chamcheu, J. C. (2018). Anticancer properties of Graviola (Annona muricata): A comprehensive mechanistic review. Oxidative Medicine and Cellular Longevity, 2018, 1826170, 1–39. https://doi.org/10.1155/2018/1826170
Amougou, L. (2022). Annona muricata (Graviola): Nutraceutical in Covid-19. IntechOpen. https://doi.org/10.5772/intechopen.104139
Zayed, S., & Hemed, R. (2021). Comparing effect of Annonaceae & emetine nanoparticles on NFĸB p65 pathway in tongue squamous cell carcinoma (scc-25). Egyptian Dental Journal, 67(3), 2181–2191. https://doi.org/10.21608/edj.2021.74323.1610
Lawal, Z. A., Hamid, A. A., Shehu, A., God’shelp, E., Ajibade, O. S., Zubair, O. A., Ogheneovo, P., Mukadam, A. A., & Adebayo, C. T. (2017). Biochemical properties, in-vitro antimicrobial, and free radical scavenging activities of the leaves of Annona muricata. Journal of Applied Sciences and Environmental Management, 21(6), 1197. https://doi.org/10.4314/jasem.v21i6.34
Gnanga, M., Assanhou, A., Ganfon, H., Agbokponto, E., Gbaguidi, F., & Ahyi, V. (2021). Annona muricata L. and Annona squamosa L. (Annonaceae): A review of their traditional uses and anticancer activities. Journal of Pharmacognosy and Phytochemistry, 10(1), 40–51. https://doi.org/10.22271/phyto.2021.v10.i1a.13287
M-Othman, L., K-Hassan, A., El-Baky, A., & A-Mahmoud, M. (2018). Antitumor activity of Annona muricata L. fruit and leaves in Ehrlich's ascites carcinoma cell-treated mice. International Journal of Advanced Biochemistry Research, 2(1), 21–24. https://doi.org/10.33545/26174693.2018.v2.i1a.11
Mat Daud, N. N. N. N., Mohamad Rosdi, M. N., Ya’akob, H., & Musa, N. F. (2015). Optimization of Soxhlet extraction parameter of Annona muricata leaves using Box-Behnken Design (BBD) expert and antioxidant analysis. Jurnal Teknologi, 77(3). https://doi.org/10.11113/jt.v77.6001
Qorina, F., Arsianti, A., Fithrotunnisa, Q., & Tejaputri, N. (2019). Extraction and antioxidant activity of Annona muricata L. leaves: Response surface methodology approach. Journal of Natural Remedies, 19(2), 1–7. https://doi.org/10.18311/jnr/2019/22090
Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J Immunol Methods. 1983;65:55–63.
Orak H, Bahrisefit I, Sabudak T. Antioxidant Activity of Extracts of Soursop (Annona muricata L.) Leaves, Fruit Pulps, Peels, and Seeds. Polish Journal of Food and Nutrition Sciences. 2019;69(4):359-366. https://doi.org/10.31883/pjfns/112654
Medina-Torres N, Ayora‐Talavera T, Espinosa‐Andrews H, Sánchez-Contreras Á, Pacheco N. Ultrasound-Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy. 2017;7(3):47. https://doi.org/10.3390/agronomy7030047
Aguilar-Hernández G, Vivar-Vera M, García-Magaña M, González-Silva N, Pérez-Larios A, Montalvo-González E. Ultrasound-assisted Extraction of Total Acetogenins from the Soursop Fruit by Response Surface Methodology. Molecules. 2020;25(5):1139. https://doi.org/10.3390/molecules25051139
Anaya-Esparza L, Ramos-Aguirre D, Zamora-Gasga V, Yahia E, Montalvo-González E. Optimization of Ultrasonic-assisted Extraction of Phenolic Compounds from Justicia spicigera Leaves. Food Science and Biotechnology. 2018;27(4):1093-1102. https://doi.org/10.1007/s10068-018-0350-0
Xu Z, Feng S, Qu J, Yuan M, Yang R, Zhou L, Chen T, Ding C. The Effect of Extraction Methods on Preliminary Structural Properties and Antioxidant Activities of Polysaccharides from Lactarius vividus. Processes. 2019;7(8):482. https://doi.org/10.3390/pr7080482
Shaharuddin S, Othman A, Zain W. Effect of Post-harvest Preservation and Extraction Methods on Antioxidant Properties of Alternanthera sessilis Red. International Journal of Engineering & Technology. 2019;7(4.14):267. https://doi.org/10.14419/ijet.v7i4.14.27579
Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH. Antioxidant and Antiproliferative Activities of Raspberries. J Agric Food Chem. 2002.
Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. Cellular Antioxidant Activity of Common Fruits. J Agric Food Chem. 2008. https://doi.org/10.1021/jf801381y
Chikwana N, Maina E, Gavamukulya Y, Bulimo W, Wamunyokoli F. Antiproliferative Activity, c-Myc and FGFR1 Genes Expression Profiles and Safety of Annona muricata Fruit Extract on Rhabdomyosarcoma and BALB/c Mice. Journal of Complementary and Alternative Medical Research. 2021:30-46. https://doi.org/10.9734/jocamr/2021/v14i430253
Astuti Y, Priambodo W, Septiyana D. Overview of Wound Assay Methods Extract Ethanol Leaves Soursop (Annona muricata) on WiDr Colon Cancer Cells. Bali Medical Journal. 2021;10(3):1385-1389. https://doi.org/10.15562/bmj.v10i3.2979
Naik AV, Dessai SN, Sellappan K. Antitumour Activity of Annona muricata L. Leaf Methanol Extracts Against Ehrlich Ascites Carcinoma and Dalton's Lymphoma Ascites Mediated Tumours in Swiss Albino Mice. The Libyan Journal of Medicine. 2021;16(1):1846862. https://doi.org/10.1080/19932820.2020.1846862
de Castro Nascimento J, do Vale Bosso RM, Anholeti MC, da Silva Castro E, Junior MAB, do Nascimento TA, de Paiva SR, Fonte de Amorim LM. Comparison of Anticancer Properties of Annona muricata L. Acetonic and Methanolic Leaf Extracts. The Natural Products Journal. 2019;9(4):312-320. https://doi.org/10.2174/2210315509666181203125608
Hirano K, Budiyanto E, Swastika N, Fujii K. Population Dynamics of the Whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), in Java, Indonesia, with Special Reference to Spatio-temporal Changes in the Quantity of Food Resources. Ecol Res. 1995. https://doi.org/10.1007/BF02347657
Gavamukulya Y, Wamunyokoli F, El-Shemy H. Annona muricata: Is the Natural Therapy to Most Disease Conditions Including Cancer Growing in Our Backyard? A Systematic Review of its Research History and Future Prospects. Asian Pacific Journal of Tropical Medicine. 2017;10(9):835-848. https://doi.org/10.1016/j.apjtm.2017.08.009
Gavamukulya Y, Maina E, El-Shemy H, Meroka A, Kangogo G, Magoma G, Wamunyokoli F. Annona muricata Silver Nanoparticles Exhibit Strong Anticancer Activities Against Cervical and Prostate Adenocarcinomas Through Regulation of CASP9 and the CXCl1/CXCR2 Genes Axis. Tumor Biology. 2021;43(1):37-55. https://doi.org/10.3233/tub-200058
Salac ELO, Alvarez MR, Gaurana RS, Grijaldo SJB, Serrano LM, Juan Fd, Abogado R, Padolina Jr. I, Deniega FM, Delica K, et al. Biological Assay-Guided Fractionation and Mass Spectrometry-Based Metabolite Profiling of Annona muricata L. Cytotoxic Compounds Against Lung Cancer A549 Cell Line. Plants. 2022;11(18):2380. https://doi.org/10.3390/plants11182380
Wahab S, Jantan I, Haque M, Arshad L. Exploring the Leaves of Annona muricata L. as a Source of Potential Anti-inflammatory and Anticancer Agents. Frontiers in Pharmacology. 2018;9:661. https://doi.org/10.3389/fphar.2018.00661
Krisanti EA, Harumanti AI, Mulia K. Annona muricata Leaves Ethanolic Extract in Water, n-Hexane, and Methanol Fractions: Cytotoxicity Assay, Antioxidant Activity, Flavonoid Content, Polyphenol Content, and Acetogenin Content. AIP Conf. Proc. 2021;2344(1):040004. https://doi.org/10.1063/5.0047484
Dzoyem JP, Donfack ARN, Tane P, McGaw LJ, Eloff JN. Inhibition of Nitric Oxide Production in LPS-stimulated RAW264.7 Macrophages and 15-LOX Activity by Anthraquinones from Pentas schimperi. Planta Med. 2016;82:1246–1251. https://doi.org/10.1055/s-0042-104417
Ignarro LJ. Nitric Oxide: Biology and Pathobiology. The Effects of Brief Mindfulness Intervention on Acute Pain Experience: An Examination of Individual Difference. 2009.
Lala PK, Chakraborty C. Role of Nitric Oxide in Carcinogenesis and Tumour Progression. Lancet Oncol. 2001;2:149–156. https://doi.org/10.1016/S1470-2045(00)00256-4
Mocellin S, Bronte V, Nitti D. Nitric Oxide, a Double Edged Sword in Cancer Biology: Searching for Therapeutic Opportunities. Med Res Rev. 2007;27(3):315-352. https://doi.org/10.1002/med.20092
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic Biol Med. 2010. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
Choudhari SK. Nitric Oxide and Cancer: A Review. World J Surg Oncol. 2013;11:118. https://doi.org/10.1186/1477-7819-11-118
Papapetropoulos A. Nitric Oxide Production Contributes to the Angiogenic Properties of Vascular Endothelial Growth Factor in Human Endothelial Cells. J Clin Invest. 1997;100. https://doi.org/10.1172/JCI119868
Coneski PN, Schoenfisch MH. Nitric Oxide Release: Part III. Measurement and Reporting. Chem Soc Rev. 2012;41:3753. https://doi.org/10.1039/c2cs15271a
Jagetia GC, Baliga MS. The Evaluation of Nitric Oxide Scavenging Activity of Certain Indian Medicinal Plants In Vitro: A Preliminary Study. J Med Food. 2004;7:343–348. https://doi.org/10.1089/jmf.2004.7.343
Mfotie Njoya E, Munvera AM, Mkounga P, Nkengfack AE, McGaw LJ. Phytochemical Analysis with Free Radical Scavenging, Nitric Oxide Inhibition and Antiproliferative Activity of Sarcocephalus pobeguinii Extracts. BMC Complement Altern Med. 2017;17. https://doi.org/10.1186/s12906-017-1712-5
Kumar S, Kashyap P. Antiproliferative Activity and Nitric Oxide Production of a Methanolic Extract of Fraxinus micrantha on Michigan Cancer Foundation-7 Mammalian Breast Carcinoma Cell Line. J Intercult Ethnopharmacol. 2015;4:109. https://doi.org/10.5455/jice.20150129102013
Singh N, Baby D, Rajguru J, Patil P, Thakkannavar S, Pujari V. Inflammation and Cancer. Annals of African Medicine. 2019;18(3):121. https://doi.org/10.4103/aam.aam_56_18
Mokry R, Schumacher M, Hogg N, Terhune S. Nitric Oxide Circumvents Virus-mediated Metabolic Regulation During Human Cytomegalovirus Infection. mBio. 2020;11(6). https://doi.org/10.1128/mbio.02630-20
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The Role of Sphingosine‐1‐Phosphate in Inflammation and Cancer Progression. Cancer Science. 2018;109(12):3671-3678. https://doi.org/10.1111/cas.13802
Syed Najmuddin SUF, Romli MF, Hamid M, Alitheen NB, Nik Abd Rahman NMA. Anti-Cancer Effect of Annona muricata Linn Leaves Crude Extract (AMCE) on Breast Cancer Cell Line. BMC Complement Altern Med. 2016;16:311. https://doi.org/10.1186/s12906-016-1290-y
Kim GT, Tran NKS, Choi EH, Song YJ, Song JH, Shim SM, Park TS. Immunomodulatory Efficacy of Standardized Annona muricata (Graviola) Leaf Extract via Activation of Mitogen-Activated Protein Kinase Pathways in RAW 264.7 Macrophages. Evidence-Based Complement Altern Med. 2016;1–10. https://doi.org/10.1155/2016/2905127
Ngemenya M, Asongana R, Zofou D, Ndip R, Itoe L, Babiaka S. In Vitro Antibacterial Potential Against Multidrug-Resistant Salmonella, Cytotoxicity, and Acute Biochemical Effects in Mice of Annona muricata Leaf Extracts. Evidence-Based Complementary and Alternative Medicine. 2022;1-7. https://doi.org/10.1155/2022/3144684
Asadi M, Taghizadeh S, Kaviani E, Vakili O, Taheri‐Anganeh M, Tahamtan M, Savardashtaki A. Caspase‐3: Structure, Function, and Biotechnological Aspects. Biotechnology and Applied Biochemistry. 2021;69(4):1633-1645. https://doi.org/10.1002/bab.2233
Yadav P, Yadav R, Jain S, Vaidya A. Caspase‐3: A Primary Target for Natural and Synthetic Compounds for Cancer Therapy. Chemical Biology & Drug Design. 2021;98(1):144-165. https://doi.org/10.1111/cbdd.13860
Safari F, Akbari B. Knockout of Caspase-7 Gene Improves the Expression of Recombinant Protein in CHO Cell Line Through the Cell Cycle Arrest in G2/M Phase. Biol Res. 2022;55(1):2. https://doi.org/10.1186/s40659-021-00369-9
Wang L, Wan G, Wang G, Zhang M, Li N, Zhang Q, Yan H. Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin Alleviates Ultraviolet-Induced Apoptosis of Human Skin Fibroblasts by Regulating the Death Receptor Pathway. Clin Cosmet Investig Dermatol. 2022;15:2925-2932. https://doi.org/10.2147/CCID.S388418
Cai L, Hai-xia W, Tu C, Wen X, Zhou B. Naringin Inhibits Ovarian Tumor Growth by Promoting Apoptosis: An In Vivo Study. Oncology Letters. 2018;16(1):59-64. https://doi.org/10.3892/ol.2018.8611
Antony A, Shrivastav N, Dubey S, Acharya A. Apoptosis Inducing Effect of Silver Nanoparticles Synthesized Using Magnolia champaca Leaf Extract on MCF-7 Cell Line. International Journal of Current Pharmaceutical Research. 2021;13(3):14-18. https://doi.org/10.22159/ijcpr.2021v13i3.42083
Jamalzadeh L, Ghafoori H, Aghamaali M, Sariri R. Induction of Apoptosis in Human Breast Cancer MCF-7 Cells by a Semisynthetic Derivative of Artemisinin: A Caspase-Related Mechanism. Iranian Journal of Biotechnology. 2017;15(3):157-165. https://doi.org/10.15171/ijb.1567
Julien O, Wells J. Caspases and Their Substrates. Cell Death and Differentiation. 2017;24(8):1380-1389. https://doi.org/10.1038/cdd.2017.44
Schwerk C, Schulze-Osthoff K. Non-apoptotic Functions of Caspases in Cellular Proliferation and Differentiation. Biochemical Pharmacology. 2003. https://doi.org/10.1016/S0006-2952(03)00497-0
Su H, Bidère N, Zheng L, Cubre A, Sakai K, Dale J, Salmena L, Hakem R, Straus S, Lenardo M. Requirement for Caspase-8 in NF-kappaB Activation by Antigen Receptor. Science. 2005. https://doi.org/10.1126/science.1104765
Amarante-Mendes GP, Finucane DM, Martin SJ, Cotter TG, Salvesen GS, Green DR. Anti-Apoptotic Oncogenes Prevent Caspase-dependent and Independent Commitment for Cell Death. Cell Death Differ. 1998. https://doi.org/10.1038/sj.cdd.4400354
Adams JM, Cory S. The Bcl-2 Apoptotic Switch in Cancer Development and Therapy. Oncogene. 2007;26:1324–37. https://doi.org/10.1038/sj.onc.1210220
Zamzami N, Kroemer G. The Mitochondrion in Apoptosis: How Pandora’s Box Opens. Nat Rev Mol Cell Biol. 2001;2:67–71. https://doi.org/10.1038/35048073
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mohamad Norisham Mohamad Rosdi, Fitrien Husin, Harisun Yaakob
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.