Theoretical Insights into the Carbon Linker Length Effects on the Radical Scavenging Activity of Curcumin

Authors

  • Lusia Silfia Pulo Boli Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia https://orcid.org/0000-0002-6687-1488
  • Febdian Rusydi ᵇDepartment of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; ᶜResearch Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia https://orcid.org/0000-0002-7224-5731
  • Vera Khoirunisa Department of Engineering Physics, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia https://orcid.org/0000-0002-5899-8462
  • Adhitya Gandaryus Saputro ᵃAdvanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; ᵉResearch Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia https://orcid.org/0000-0001-7848-3602
  • Muhammad Haris Mahyuddin ᵃAdvanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; ᵉResearch Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia https://orcid.org/0000-0002-8017-7847
  • Kazunari Yoshizawa Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819- 0395, Japan https://orcid.org/0000-0002-6279-9722
  • Heni Rachmawati ᵉResearch Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia; ᵍSchool of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia https://orcid.org/0000-0003-1968-0002
  • Hermawan kresno Dipojono ᵃAdvanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; ᵉResearch Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia https://orcid.org/0000-0002-1391-3533

DOI:

https://doi.org/10.11113/mjfas.v20n1.3245

Keywords:

Curcumin linker length; first-principles calculations; multifunctional medicine; radical scavenging activity

Abstract

Linker length is one crucial factor affecting the free radical scavenging activity of curcumin. However, identifying an optimal linker length that maintains the desired activity remains challenging. This study offers a thermodynamic evaluation of the influence of linker length on free radical scavenging activity of curcumin, specifically through the hydrogen atom transfer mechanism, in water solvents. Our first-principles calculations reveal that both elongating and shortening the linker promotes a more favorable hydrogen atom transfer at the phenolic O─H and the C─H bond within the linker, respectively. Therefore, linker length should be considered in developing curcumin as a multifunctional medicine.

References

S.C. Sharma, H. Mukhtar, S. K. Sharma, C. R. Krishna Murt. (1972). Lipid peroxide formation in experimental inflammation. Biochemical Pharmacology, 21(8), 1210-121421.

H. Yin, L. Xu, N. A. Porter. (2011). Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 111(10), 5944–5972.

D. Hahnel, K. Beyer, B. Engelmann, Free Radical Biol. Med. 27.9 (1999) 1087–1094.

U. Singh, A. Barik, B. G. Singh, K. I. Priyadarsini, Free Rad. Res. 45.3 (2011) 317–325.

A. Kunwar, A. Barik, S. K. Sandur, K. I. Priyadarsini, Free Rad. Res. 45.8 (2011) 959–965.

A. Banerjee, A. Kunwar, B. Mishra, and K.I. Priyadarsini, Chem.-Biol. Interact. 174.2 (2008) 134–139.

K.I. Priyadarsini, Free Rad. Biol. Med. 23.6 (1997) 838–843.

B. Cemil, K. Topuz, M. N. Demircan, G. Kurt, K. Tun, M. Kutlay, O. Ipcioglu, Z. Kucukodaci, Acta Neurochir. 152 (2010) 1583–1590.

R. Sanivarapu, V. Vallabhaneni, V. Verma, Neurol. Res. Int. (2016) 9468193.

R. Manikandan, R. Thiagarajan, S. Beulaja, G. Sudhandiran, M. Arumugam, Free Radic. Biol. Med. 48.4 (2010) 483–492.

A. S Darvesh, R. T Carroll, A. Bishayee, N. A Novotny, W. J Geldenhuys, C. J Van der Schyf. Expert Opin. Investig. Drugs 21.8 (2012) 1123–1140.

A. Monroy, G. J. Lithgow, S. Alavez, Biofactors 39.1 (2013) 122–132.

W. Park, A.R.M. R. Amin, Z. G. Chen, D. M. Shin, Cancer Prev. Res. (Phila). 6.5 (2013) 387–400.

A. Giordano, G. Tommonaro, Nutrients 11.10 (2019) 2376.

V. Calabrese, T. E. Bates, C. Mancuso, C. Cornelius, B. Ventimiglia, M. T. Cambria, L. Di Renzo, A. De Lorenzo, A. T. Dinkova-Kostova, Mol. Nutr. Food Res. 52.9 (2008) 1062–1073.

M. Bo, L. Jun, C. Hong, Curr. Pharm. Des. 19.11 (2013) 2101–2113.

L. Arshad, Md. A.l Haque, S.d N. A. Bukhari, I. Jantan, Future Med. Chem. 9.6 (2017) 605–626.

P. Somparn, C. Phisalaphong, S. Nakornchai, S. Unchern, N. P. Morales, Biol. Pharm. Bull. 30.1 (2007) 74–78.

W. M Weber, L. A Hunsaker, S. F Abcouwer, L. M Deck, D. L Vander Jagt, Bioorg. Med. Chem. 13.11 (2005) 3811–3820.

E. Ferrari, F. Pignedoli, C. Imbriano, G. Marverti, V. Basile, E. Venturi, M. Saladini, J. Med. Chem. 54.23 (2011) 8066–8077.

Q-T Zheng, Z-H Yang, L-Y Yu, Y-Y Ren, Q-X Huang, Q. Liu, X-Y Ma, Z-K Chen, Z-B Wang, X Zheng, J. Asian Nat. Prod. Res. 19(5) (2017) 489–503.

M. I. de Heer, P. Mulder, H-G Korth, K. U. Ingold, J. Lusztyk, J. Am. Chem. Soc. 122.10 (2000) 2355–2360.

W-F Chen, S-L Deng, B Zhou, L Yang, Z-L Liu, Free Radic. Biol. Med. 40.3 (2006) 526–535.

K. Bairwa, J. Grover, M. Kania, S. M. Jachak, RSC Adv.l 4.27 (2014) 13946–13978.

S. A. Noureddin, R M. El-Shishtawy, K O. Al-Footy, Eur. J. Med. Chem (2019) 111631.

Y-J Shang, X-L Jin, X-L Shang, J-J Tang, G-Y Liu, F Dai, Y-P Qian, G-J Fan, Q Liu, B Zhou, Food Chem. 119(4) (2010) 1435– 1442.

L. Ross C. Barclay, M R. Vinqvist, K Mukai, H Goto, Y Hashimoto, A Tokunaga, H Uno, Org Let 2.18 (2000) 2841–2843.

G. W. Burton, T. Doba, E. Gabe, L. Hughes, F. L. Lee, L. Prasad, K U. Ingold, J Am Chem Soc. 107.24 (1985) 7053–7065.

A Galano, R Alvarez-Diduk, M T Ramirez-Silva, G Alarcon-Angeles, A Rojas-Hernandez, Chem. Phys. 363.1-3 (2009) 13–23.

S. V. Jovanovic, S. Steenken, C. W. Boone, M. G. Simic, J Am Chem Soc. 121.41 (1999) 9677–9681.

Y Manolova, V Deneva, L Antonov, E Drakalska, D Mo- mekova, N Lambov, Spectrochim. Acta A. 132 (2014) 815–820.

S Mondal, S Ghosh, S. P. Moulik, J Photochem 158 (2016) 212–218.

Y-M Sun, H-Y Zhang, D-Z Chen, C-B Liu, Org Let. 4.17 (2002) 2909–2911.

Q. Li, J. Chen, S. Luo, J. Xu, Q. Huang, T. Liu, Eur. J. Med. Chem. 93 (2015) 461– 469.

L. Bedard, M. J. Young, D. Hall, T. Paul, K. U. Ingold, J. Am. Chem. Soc. 123.50 (2001) 12439–12448.

J. Aikens and T.A. Dix, Arch. Biochem. Biophys. 305.2 (1993), pp. 516–525.

J. Tomasi, B. Mennucci, E. Canc`es, J. Mol. Struct.Theochem 464 (1999) 211–226.

D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr, J.Troe, and R. T. Watson, J. Phys. Chem. Ref. Data 13 (1984) 1259.

A. Sinha, M. C. Hsiao, F. F Crim, J. Chem. Phys. 94 (1991) 4928.

K. Hassanzadeh, K. Akhtari, H. Hassanzadeh, S. Amir Zarei, N. Fakhraei, K. Hassanzadeh, Food Chem 164 (2014) 251–258.

F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry (Part A: Structure and Mechanisms) (5th ed.), New York: Springer, 2007, P. 1001.

J. S. Wright, E. R. Johnson, G. A. DiLabio, J. Am. Chem. Soc 123.6 (2001) 1173–1183.

O. V. Dorofeeva and O. N. Ryzhova, J. Phys. Chem. A 120.15 (2016) 2471–2479.

P. Hohenberg and W. Kohn, Phys. Rev. 136.3B (1964), B864.

W. Kohn and L. J. Sham, Phys. Rev. A 140.4A (1965), A1133.

M. J. Frisch et al. Gaussian˜16 Revision C.01. Gaussian Inc. Wallingford CT. 2016.

M. H. Mahyuddin, A. Staykov, A. G. Saputro, M. K. Agusta, H. K. Dipojono, K. Yoshizawa, J. Phys. Chem. C 124 (2020) 18112-18125.

M. H. Mahyuddin, A. G. Saputro, R. P. P. Sukanli, F. Fathurrahman, J. Rizkiana, A. Nuruddina, H. K. Dipojono, Phys. Chem. Chem. Phys. 24 (2022) 4196.

R. Kishida, A. G. Saputro, R. L. Arevalo, H. Kasai, Int. J. Quantum Chem 117.23 (2017) e25445.

R. Kishida, A. G. Saputro, and H. Kasai, Biochim. Biophys. Acta 1850.2 (2015) 281–286.

Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215–241.

V. Khoirunisa, F. Rusydi, L.S.P. Boli, I. Puspitasari, H. Rachmawati, H. K. Dipojono, R. Soc. Open Sci. 8.201127 (2021) 1–10.

L.S.P. Boli, F. Rusydi, V. Khoirunisa, I. Puspitasari, H. Rachmawati, H. K. Dipojono, Theor. Chem. Acc. 140.94 (2021) 1–9.

M. Spiegel, A. Gamian, Z. Sroka, Mol. 26.16 (2021) 5058.

F. Rusydi, R. Madinah, I. Puspitasari, M.L.W. Fui, A. Ahmad, A. Rusydi, Biochem. Mol. Biol. Educ. 49.2 (2021) 216–227.

E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. “NBO Version 3.1”.

E. D. Glendening, C.R. Landis, F. Weinhold, Wires Comput. Mol. Sci. 2.1 (2011) 1–42.

P. Sanphui, N. R. Goud, U. B. Rao Khandavilli, S. Bhanoth, A. Nangia, Chem. Commun. 47 (2011) 5013–5015.

R. Benassi, E. Ferrari, S. Lazzari, F. Spagnolo, M. Saladini, J. Mol. Struct. 892 (2008) 168–176.

T. Brinck, M. Haeberlein, M. Jonsson, J. Am. Chem. Soc. 119.18 (1997) 4239– 4244.

K.I. Priyadarsini, D.K. Maity, G.H. Naik, M. S. Kumar, M.K. Unnikrishnan, J.G. Satav, H. Mohan, Free Radic. Biol. Med. 35.5 (2003) 475–484.

A. Barzegar and A. A. Moosavi-Movahedi, PLoS ONE 6(10) (2011) e26012.

D.K. Thbayh and B. Fiser, Polym. Degrad. Stab. 201 (2022) 109979.

Y. Zhao and D.G. Truhlar, J. Phys. Chem. A 112.6 (2008) 1095–1099.

Y. Sugiyama, S. Kawakishi, T. Osawa, Biochem. Pharmacol. 52.4 (1996) 519–525.

E. Arunan et al., Pure Appl. Chem. 83.8 (2011) 1637–1641.

Downloads

Published

08-02-2024