Production of Vanillin from Pumpkin Peels via Microbiological Fermentation using Aspergillus niger

Authors

  • Raisatul Mirza Mohd Rifaie Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
  • Latiffah Karim Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v19n6.3193

Keywords:

Vanillin, ferulic acid, fermentation, pumpkin peels, alkaline hydrolysis

Abstract

Vanilla is the main natural flavouring agent used in industries such as pharmaceuticals, food, flavouring, and fragrance, in which vanillin is the major component. Vanillin (4-hydroxy-3-methoxybenzaldehyde) is a secondary metabolite of plants and the major organoleptic aroma component of natural vanilla. The vanillin compound can be produced using the following routes: direct vanilla bean extraction, chemical synthesis, and biotechnological processes (bio-vanilla production). Nowadays, the chemical synthesis method used for vanillin production has been rejected by the United States and European legislation, while plant-derived vanillin is expensive. The current study demonstrates vanillin production from pumpkin peels (Cucurbita moschata) by Aspergillus niger via one-step fermentation approach. This study implements different concentrations of sodium hydroxide (1.0 M and 2.0 M) during alkaline hydrolysis pretreatment and different feeding volumes of hydrolysates during the biotransformation processes of ferulic acid into vanillin, classified as small feeding volumes (SFV) and large feeding volumes (LFV). Detection and quantification analysis were carried out using high performance liquid chromatography (HPLC), resulting in vanillin yield of 0.49 mg/L (1.0 M SFV), 0.5 mg/L (1.0 M LFV), 0.33 mg/L (2.0 M SFV), 0.59 mg/L (2.0 M LFV). Analysis with ultraviolet-visible (UV-VIS) spectrophotometry using thiobarbituric acid as reagent was carried out as well, resulting in vanillin yield of 2.76 µg/ml (1.0 M SFV), 3.78 µg/ml (1.0 M LFV), 2.68 µg/ml (2.0 M SFV), 3.05 µg/ml (2.0 M LFV). In conclusion, pumpkin peels can be considered a great source of ferulic acid and Aspergillus niger was reported as an efficient fungus in converting ferulic acid to vanillic acid, which will then be transformed into vanillin.

References

Aarabi, A., Mizani, M., Honarvar, M., Faghihian, H., & Gerami, A. (2015). Extraction of ferulic acid from sugar beet pulp by alkaline hydrolysis and organic solvent methods. Journal of Food Measurement and Characterization, 10(1), 42-47. Retrieved from https://doi.org/10.1007/s11694-015-9274-z.

Brunati, M., Marinelli, F., Bertolini, C., Gandolfi, R., Daffonchio, D. & Molinari, F. (2004). Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme and Microbial Technology, 34(1), 3-9. Retrieved from https://doi.org/10.1016/j.enzmictec.2003.04.001.

Gundupalli, M.P., Kajiura, H., Ishimizu, T. & Bhattacharyya, D. (2020). Alkaline hydrolysis of coconut pith: process optimization, enzymatic saccharification, and nitrobenzene oxidation of Kraft lignin. Biomass Conversion and Biorefinery. Retrieved from https://doi.org/10.1007/s13399-020-00890-z.

Karmakar, B., Vohra, R.M., Nandanwar, H., Sharma, P., Gupta, K.G. & Sobti, R.C. (2000). Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. Journal of Biotechnology, 80(3), 195-202. Retrieved from https://doi.org/10.1016/S0168-1656(00)00248-0.

Khoyratty, S., Kodja, H. & Verpoorte, R. (2018). Vanilla flavour production methods: A review. Industrial Crops and Products, 125, 433-442. Retrieved from https://doi.org/10.1016/j.indcrop.2018.09.028.

Lesage-Meessen, L., Delattre, M., Haon, M., Thibault, J.F., Ceccaldi, B.C., Brunerie, P. & Asther, M. (1996). A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. Journal of Biotechnology, 50, 107-113. Retrieved from https://doi.org/10.1016/0168-1656(96)01552-0.

Martău, G. A., Călinoiu, L.-F., & Vodnar, D. C. (2021). Bio-vanillin: Towards a sustainable industrial production. Trends in Food Science & Technology, 109, 579-592. Retrieved from https://doi.org/10.1016/j.tifs.2021.01.059.

Mehmood, T., Ahmed, S., Waseem, R., Saeed, S., Ahmed, W., Irfan, M. & Ullah, A. (2022). Valorization of Fruit Peels into Biovanillin and Statistical Optimization of Process Using Enterobacter hormaechei through Solid-State Fermentation. Fermentation, 8(2), 40. Retrieved from https://doi.org/10.3390/fermentation8020040.

Motedayen, N., Maznah, I. & Nazarpour, F. (2013). Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaete crysosporium ATCC 24725. African Journal of Biotechnology, 12(47), 6618-6624. Retrieved from https://doi.org/10.5897/AJB2013.12416.

Noor Syahierah, M. S., Zulkali, M. M. D. & Ku Syahidah, K. I. (2008). Ferulic acid from lignocellulosic biomass: review. Proceedings of Malaysian Universities Conferences on Engineering and Technology (MUCET 2008), 1-8. Retrieved from http://dspace.unimap.edu.my/123456789/2620.

Nyong, B. E., Obo Okokon, I., Precious Okokon, I. & Jones, B. B. (2021). Physico-chemical composition of telfairia occidentalis (fluted pumpkin fruit) pulp. Journal of Research in Pharmaceutical Science, 7(6), 2347-2995. Retrieved from https://www.researchgate.net/publication/352994313.

Patil, P. D. & Yadav, G. D. (2018). Comparative studies of white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for effective degradation and bioconversion of ferulic acid. ACS Omega, 3(11), 14858-14868. Retrieved from https://doi.org/10.1021/acsomega.8b01614.

Paul, V., Rai, D. C., Ramyaa Lakshmi T. S, Srivastava, S. K. & Tripathi, A. D. (2021) A comprehensive review on vanillin: its microbial synthesis, isolation and recovery. Food Biotechnology, 35(1), 22-49. Retrieved from https://doi.org/10.1080/08905436.2020.1869039.

Rejani, C. T. & Radhakrishnan, S. (2022). Microbial conversion of vanillin from ferulic acid extracted from raw coir pith. Natural Product Research, 36(4), 901-908. Retrieved from https://doi.org/10.1080/14786419.2020.1849194.

Saeed, S., Baig, U. U. R., Tayyab, M., Altaf, I., Irfan, M., Raza, S. Q., Nadeem, F. & Mehmood, T. (2021). Valorization of banana peels waste into biovanillin and optimization of process parameters using submerged fermentation. Biocatalysis and Agricultural Biotechnology, 36, 102154. Retrieved from https://doi.org/10.1016/j.bcab.2021.102154.

Tang, P. L. & Hassan, O. (2020). Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I-1472. BMC Chemistry, 14(7). Retrieved from https://doi.org/10.1186/s13065-020-0663-y.

Thibault, J-F., Asther, M., Ceccaldi, B. C., Couteau, D., Delattre, M., Duarte, J. C., Faulds, C., Heldt-Hansen, H-P., Kroon, P., Lesage-Meessen, L., Micard, V., Renard, C. M. G. C., Tuohy, M., Van Hulle, S. & Williamson, G. (1998). Fungal bioconversion of agricultural by-products to vanillin. LWT- Food Science and Technology, 31(6), 530-536. Retrieved from https://doi.org/10.1006/fstl.1998.0411.

Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J. & Guo, X. (2007). Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technology, 98(5), 1115-1119. Retrieved from https://doi.org/10.1016/j.biortech.2006.03.028.

Downloads

Published

04-12-2023