A Need Analysis of the Criteria Involved in Determining Suitable Locations for Photovoltaic Electric Vehicle Charging Stations in Malaysia
DOI:
https://doi.org/10.11113/mjfas.v19n6.3114Keywords:
Need Analysis, criteria, photovoltaic electric vehicle charging stations, MalaysiaAbstract
The main concern is a lack of scientific planning for photovoltaic electric vehicle charging stations (PEVCS) that considers numerous main criteria and sub-criteria. PEVCS should be strategically positioned in an appropriate and ideal location to ensure that electric vehicle (EV) users may reach the stations within their driving range. While the adoption of solar is still minimal in Malaysia, Malaysia needs to move faster to allocate the PEVCS at the strategic locations. Regarding this matter, this study aims to determine the suitable criteria for allocating the location of PEVCS in Malaysia. 52 out of 177 sub-criteria and six main criteria items were selected for the Need Analysis in this study as part of the data collecting procedure, which involved 12 respondents. The result revealed that the Need Analysis was used to choose 41 of the sub-criteria, including society (8), economics (10), environment (7), technology (6), accessibility (6), and proximity (4). For future studies, it is recommended to use Likert scales for analysing the data from the Need Analysis, along with calculating the mean and standard deviation values, while utilizing GIS-based MCDM methods to allocate ideal PEVCS locations in Malaysia through the development of a new prediction location model.
References
International Energy Agency. (2023). CO2 Emissions in 2022. [Online]. Available: https://www.iea.org/reports/co2-emissions-in-2022.
H. Ritchie and M. Roser. (2020). Malaysia: CO2 Country Profile. [Online]. Available: https://ourworldindata.org/co2/country/malaysia.
S. Khan, A. Ahmad, F. Ahmad, M. Shafaati Shemami, M. Saad Alam, and S. Khateeb. (2018). A comprehensive review on solar powered electric vehicle charging system. Smart Sci., 6(1), 54-79. Doi: 10.1080/23080477.2017.1419054.
S. Khan, K. Sudhakar, and M. Hazwan Bin Yusof. (2022). Techno-environmental analysis of facade integrated photovoltaics and electric vehicle charging for university building. Math. Probl. Eng., Doi: 10.1155/2022/7186009.
N. A. Q. Muzir, M. R. H. Mojumder, Md. Hasanuzzaman, and J. Selvaraj. (2022). Challenges of electric vehicles and their prospects in Malaysia: A comprehensive review. Sustainability, 14(14), 8320. Doi: 10.3390/su14148320.
Bernama. (2019). Green transport the way forward. New Straits Times, Oct. 17, 2019. [Online]. Available: https://www.nst.com.my/cbt/2019/10/530681/green-transport-way-forward.
S. Hisoglu, A. Tuominen, and A. Huovila. (2023). An approach for selecting optimal locations for electric vehicle solar charging stations. IET Smart Cities, March, 1-12. Doi: 10.1049/smc2.12058.
K. Koirala, M. Tamang, and Shabbiruddin. (2022). Planning and establishment of battery swapping station - A support for faster electric vehicle adoption. J. Energy Storage, 51, 104351. Doi: 10.1016/j.est.2022.104351.
J. Feng, S. X. Xu, and M. Li. (2020). A novel multi-criteria decision-making method for selecting the site of an electric-vehicle charging station from a sustainable perspective. Sustain. Cities Soc., 65, 102623. Doi: 10.1016/j.scs.2020.102623.
M. E. Genevois and H. Kocaman. (2018). Locating electric vehicle charging stations in Istanbul with AHP based Mathematical modelling. Int. J. Transp. Syst., 3, 1-10.
S. Guo and H. Zhao. (2015). Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Appl. Energy, 158, 390-402. Doi: 10.1016/j.apenergy.2015.08.082.
B. H. Lee, S. J. Jung, J. H. Sung, O. kyu Kwon, and B. S. Kim. (2021). Selection of charging sites for electric vehicles in the Republic of Korea based on Fuzzy Analytic Hierarchy Process. J. Korean Phys. Soc., 79(3), 217-229. Doi: 10.1007/s40042-021-00128-9.
H. C. Liu, M. Yang, M. Zhou, and G. Tian. (2019). An Integrated multi-criteria decision making approach to location planning of electric vehicle charging stations. IEEE Trans. Intell. Transp. Syst., 20(1), 362-373. Doi: 10.1109/TITS.2018.2815680.
B. D. Rouyendegh (B. Erdebilli), C. I. Doğru, and C. B. Aybirdi. (2019). A comparison of different multi-criteria analyses for electric vehicle charging station deployment. Commun. Math. Appl., 10(1), 145-158. Doi: 10.26713/cma.v10i1.1126.
B. Yagmahan and H. Yılmaz. (2023). An integrated ranking approach based on group multi-criteria decision making and sensitivity analysis to evaluate charging stations under sustainability. Environ. Dev. Sustain., 25(1), 96-121. Doi: 10.1007/s10668-021-02044-1.
L. Yang, Z. Cheng, B. Zhang, and F. Ma. (2021). Electric vehicle charging station location decision analysis for a two-stage optimization model based on Shapley function. J. Math., 2021, 1-9. Doi: 10.1155/2021/5098378.
H. Zhao and N. Li. (2016). Optimal siting of charging stations for electric vehicles based on fuzzy Delphi and hybrid multi-criteria decision making approaches from an extended sustainability perspective. Energies, 9(4), 270. Doi: 10.3390/en9040270.
P. Rani and A. R. Mishra, “Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection,” Expert Syst. Appl., vol. 182, no. May, p. 115267, 2021, doi: 10.1016/j.eswa.2021.115267.
Y. Ju, D. Ju, E. D. R. Santibanez Gonzalez, M. Giannakis, and A. Wang. (2019). Study of site selection of electric vehicle charging station based on extended GRP method under picture fuzzy environment. Comput. Ind. Eng., 135, 1271-1285. Doi: 10.1016/j.cie.2018.07.048.
Y. Wu, M. Yang, H. Zhang, K. Chen, and Y. Wang. (2016). Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method. Energies, 9(3), 157. Doi: 10.3390/en9030157.
L. Sun. (2020). Site selection for EVCSs by GIS-based AHP method. E3S Web of Conferences, 194, 05051. Doi: 10.1051/e3sconf/202019405051.
Y. Wu, C. Xie, C. Xu, and F. Li. (2017). A decision framework for electric vehicle charging station site selection for residential communities under an intuitionistic fuzzy environment: A case of Beijing. Energies, 10(9), 1270. Doi: 10.3390/en10091270.
R. Philipsen, T. Schmidt, J. Van Heek, and M. Ziefle. (2016). Fast-charging station here, please! User criteria for electric vehicle fast-charging locations. Transp. Res. Part F Traffic Psychol. Behav., 40, 119-129. Doi: 10.1016/j.trf.2016.04.013.
S. Hosseini and M. D. Sarder. (2017). Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int. J. Electr. Power Energy Syst., 105(April), 110-122. Doi: 10.1016/j.ijepes.2018.08.011.
Ö. Kaya, K. D. Alemdar, A. Atalay, M. Y. Çodur, and A. Tortum. (2022). Electric car sharing stations site selection from the perspective of sustainability: A GIS-based multi-criteria decision making approach. Sustain. Energy Technol. Assessments, 52, 102026. Doi: 10.1016/j.seta.2022.102026.
Ö. Kaya, K. D. Alemdar, and M. Y. Çodur. (2020). A novel two stage approach for electric taxis charging station site selection. Sustain. Cities Soc., 62, 102396. Doi: 10.1016/j.scs.2020.102396.
J. Priefer and L. Steiger. (2022). Designing a GIS-AHP-based spatial decision support system for discovering and visualizing suitable locations for electric vehicle charging stations. Wirtschaftsinformatik 2022 Proceedings, [Online]. Available: https://aisel.aisnet.org/wi2022.
A. Ghosh et al. (2021). Application of hexagonal fuzzy MCDM methodology for site selection of electric vehicle charging station. Mathematics, 9(4), 393. Doi: 10.3390/math9040393.
J. Zhou, Y. Wu, C. Wu, F. He, B. Zhang, and F. Liu. (2020). A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing. Energy Convers. Manag., 205, 112340. Doi: 10.1016/j.enconman.2019.112340.
A. Awasthi, K. Venkitusamy, S. Padmanaban, R. Selvamuthukumaran, F. Blaabjerg, and A. K. Singh. (2017). “Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm. Energy, 133, 70-78. Doi: 10.1016/j.energy.2017.05.094.
M. Erbaş, M. Kabak, E. Özceylan, and C. Çetinkaya. (2018). Optimal siting of electric vehicle charging stations: A GIS-based fuzzy multi-criteria decision analysis. Energy, 163, 1017-1031. Doi: 10.1016/j.energy.2018.08.140.
D. Guler and T. Yomralioglu. (2020). Suitable location selection for the electric vehicle fast charging station with AHP and fuzzy AHP methods using GIS. Ann. GIS, 26(2), 169-189. Doi: 10.1080/19475683.2020.1737226.
Ö. Kaya, A. Tortum, K. D. Alemdar, and M. Y. Çodur. (2019). Site selection for EVCS in Istanbul by GIS and multi-criteria decision-making. Transp. Res. Part D Transp. Environ., 80(December), 102271. Doi: 10.1016/j.trd.2020.102271.
S. Sisman, I. Ergul, and A. C. Aydinoglu. (2021). Designing GIS-based site selection model for urban investment planning in smart cities with the case of electric vehicle charging stations. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. 46, 515-522. Doi: 10.5194/isprs-Archives-XLVI-4-W5-2021-515-2021.
M. Mahdy, A. S. Bahaj, P. Turner, N. Wise, A. S. Alghamdi, and H. Hamwi. (2022). Multi criteria decision analysis to optimise siting of electric vehicle charging points—Case study Winchester District, UK. Energies, 15(7), 2497. Doi: 10.3390/en15072497.
Ö. Kaya, K. D. Alemdar, T. Campisi, A. Tortum, and M. K. Çodur. (2021). The development of decarbonisation strategies: A three-step methodology for the suitable analysis of current EVCS locations applied to Istanbul, Turkey. Energies, 14(10), 2756. Doi: 10.3390/en14102756.
A. Khalife, T. A. Fay, and D. Göhlich. (2022). Optimizing public charging: An integrated approach based on GIS and multi-criteria decision analysis. World Electr. Veh. J., 13(8). Doi: 10.3390/wevj13080131.
H. Jinglin et al. (2018). Planning of electric vehicle charging station on highway considering existing service areas and dynamic traffic simulations. 2018 China International Conference on Electricity Distribution, CICED. 2645-2649. Doi: 10.1109/CICED.2018.8592343.
C. Karolemeas, S. Tsigdinos, P. G. Tzouras, A. Nikitas, and E. Bakogiannis. (2021). Determining electric vehicle charging station location suitability: A qualitative study of greek stakeholders employing thematic analysis and analytical hierarchy process. Sustain., 13(4), 2298. Doi: 10.3390/su13042298.
M. H. Ghodusinejad, Y. Noorollahi, and R. Zahedi. (2022). Optimal site selection and sizing of solar EV charge stations. J. Energy Storage, 56, 105904. Doi: 10.1016/j.est.2022.105904.
A. Fikry, S. C. Lim, and M. Z. A. Ab Kadir. (2021). EMI radiation of power transmission lines in Malaysia. F1000Research, 10(November), 1136. Doi: 10.12688/f1000research.73067.1.
D. N. A. Abdullah and D. A. A. Mohamad. (2022). Recycling EV batteries for environmental ecosystem wellbeing. New Straits Times, Apr. 03, 2022. [Online]. Available: https://www.nst.com.my/opinion/columnists/2022/04/785551/recycling-ev-batteries-environmental-ecosystem-wellbeing.
K. Koirala and Shabbiruddin. (2023). Optimal selection of sustainable battery supplier for electric vehicle battery swapping station. Energy Sources, Part A Recover. Util. Environ. Eff., 45(1), 2206-2227. Doi: 10.1080/15567036.2023.2185702.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 R. N. Farah, N. A. Syahirah, N. Misron, M. S. M. Azmi, N. S. A. Karim, N.M. Husin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.