Synthesis of Nanomagnetite/Crosslinked Carboxymethyl kappa Carrageenan Nickel Imprinted Composite


  • Irma Kartika Kusumaningrum ᵃDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang, 65145, Indonesia; ᵇCenter of Advance Material and Renewable Energy, Universitas Negeri Malang (CAMRY UM) Jl. Semarang 5 Malang, 65145, Indonesia
  • Mira Nur Fadilah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang, 65145, Indonesia
  • Anugrah Ricky Wijaya Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang, 65145, Indonesia
  • Habiddin Habiddin Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang, 65145, Indonesia
  • Meliza Armaya Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang, 65145, Indonesia



Nano magnetite, Adsorption, NM/CMKCNi(II)-IIP, Carboxymethyl k-Carrageenan, Ni(II) ion


Nickel(II) ions are carcinogenic water pollutants. To increase the accuracy of instrumental analysis of Ni(II) content, several analytical preparation methods have been developed, including solid phase adsorption extraction. The development of magnetic solid phase extraction adsorbents for metal ions is required, to support the application of magnetic solid phase adsorption as a method of separating metal ions in aqueous samples. This research describes the synthesis of Magnetic Solid Phase Extraction adsorbents as Ni(II) ion adsorbents, nano magnetite/carboxymethyl kappa-carrageenan (CMKC) crosslinked bisphenol A diglycidyl ether (BADGE) imprinted Ni(II)-IIP ion composites. This research was carried out in several stages, synthesis and characterization of nano magnetite (NM), synthesis and characterization of CMKC, and synthesis of NM/CMKCNi(II)-IIP adsorbents. The results of the synthesis were analyzed for morphological characteristics, magnetic strength, spectral characteristics, crystallinity, and composition using SEM, FTIR, XRD, and XRF instruments. The adsorption ability of Ni(II) of the adsorbent was tested. Determination of Ni(II) ion content in the sample before and after adsorption was carried out using a flame atomic absorption spectrophotometer (FAAS). Based on the results of spectral character analysis, crystal diffraction patterns, magnetic strength, and morphology, it is confirmed that nano-magnetite has been successfully synthesized. The diameter of the nano magnetite grains is 21.8 nm, the adsorbent NM/CMKCNi(II)-IIP has magnetic properties and wavy surface morphology. The optimum adsorption ability of Ni(II) for the NM/CMKCNi(II)-IIP composite was 2.44 mg Ni(II)/g adsorbent. To evaluate the tendency of the adsorption ability of the adsorbent towards Ni(II) ions in the presence of competitor ions, the adsorption ability of the adsorbent to adsorp Ni(II) ions in samples containing Ni(II) ions, Pb(II) ions and a mixture of Ni(II) ions. and Pb(II) were determined, based on the results of the analysis, the ability of the adsorbent to adsorb Ni(II) ions was higher than the ability of the adsorbent to adsorb Pb(II) ions, in all types of samples.


I. Said. (2022). Nickel pollution pathways in small ecosystem, Egypt. Arab. J. Geosci., 15(10).

S. Vellaichamy. (2017). Adsorptive separation of copper, nickel, lead, zinc and cadmium from aqueous solution using MWCNTs impregnated with D2EHPA and prior to their determination by FAAS: Kinetic and equilibrium studies. Sep. Sci. Technol., 52(4), 644-656.

I. Hagarová. (2020). Magnetic solid phase extraction as a promising technique for fast separation of metallic nanoparticles and their ionic species: A review of recent advances. J. Anal. Methods Chem., 2020.

E. Kazemi, A. M. Haji Shabani, and S. Dadfarnia. (2015). Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples. Microchim. Acta, 182(5-6), 1025-1033.

Z. Xie, Y. Chen, L. Zhang, and X. Hu. (2020). Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. J. Biomater. Sci. Polym. Ed., 31(1), 53-71.

C. Liu, S. Wu, Y. Yan, Y. Dong, X. Shen, and C. Huang. (2019). Application of magnetic particles in forensic science.TrAC - Trends in Analytical Chemistry, 121. Elsevier.

M. Yu, L. Wang, L. Hu, Y. Li, D. Luo, and S. Mei. (2019). Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. TrAC - Trends in Analytical Chemistry, 119. Elsevier.

Y. Wu et al. (2020). Enrichment and sensitive determination of phthalate esters in environmental water samples: A novel approach of MSPE-HPLC based on PAMAM dendrimers-functionalized magnetic-nanoparticles. Talanta, 206.

S. Liu et al. (2019). Magnetic nanoparticle of metal-organic framework with core-shell structure as an adsorbent for magnetic solid phase extraction of non-steroidal anti-inflammatory drugs. Talanta, 194, 514-521.

Y. Zhang et al. (2019). Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening. TrAC - Trends in Analytical Chemistry, 121. Elsevier.

H. L. Jiang, N. Li, L. Cui, X. Wang, and R. S. Zhao. (2019). “Recent application of magnetic solid phase extraction for food safety analysis. TrAC - Trends in Analytical Chemistry, 120. Elsevier.

I. Hagarová. (2020). Magnetic solid phase extraction as a promising technique for fast separation of metallic nanoparticles and their ionic species: A review of recent advances. J. Anal. Methods Chem., 2020.

Y. P. Yew et al. (2020). Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arabian Journal of Chemistry, 13(1), 2287-2308,

E. Aghaei, R. D. Alorro, A. N. Encila, and K. Yoo. (2017). Magnetic adsorbents for the recovery of precious metals from leach solutions and wastewater. Metals (Basel)., 7(12), 1-32.

R. Nostia, I. K. Kusumaningrum, A. R. Wijaya, B. Zuhroti, and F. Kurniawan. (2020). The capability of nanomagnetite carboxymethyl kappa-carrageenan coated to adsorp metal ions. AIP Conf. Proc., 2215.

L. Y. C. Madruga, R. M. Sabino, E. C. G. Santos, K. C. Popat, R. de C. Balaban, and M. J. Kipper. (2020). Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int. J. Biol. Macromol., 152, 483-491.

N. N. Purnama et al. (2020). Preliminary study on the development of preconcentration method of Cu(II), Co(II), Ni(II), and Cr(III) ions in water samples using nanomagnetite coated by carboxymethyl Kappa-Carrageenan (CMKC). IOP Conf. Ser. Mater. Sci. Eng., 833(1).

D. F. Pratiwi. (2020). Sintesis nanomagnetit karboksimetil kappakaragenan (CMKC) serta aplikasinya sebagai media prekonsentrasi campuran ion logam Ni(II) dan Cr(III) dalam sampel air dengan teknik adsorpsi-desorpsi. Universitas Negeri Malang, 2020.

R. A. Ayuningtyas, I. K. Kusumaningrum, Y. Utomo, Munzil, R. C. Setiawan, A. R. Wijaya, and S. Wonorahardjo. (2021). Synthesis of carboxymethyl kappa -Carrageenan coated nanomagnetite and its application as preconcentration medium for water samples containing Pb(II)-Cu(II) and Pb(II)-Co(II). AIP Conf. Proc., 2330(II).

R. Nostia. (2019). Kemampuan nanopartikel magnetit terlapis karboksimetil kappa-karagenan untuk mengadsorpsi ion kromium(III) dan nikel(II) pada variasi derajat keasaman (pH) dan waktu kontak adsorpsi. Universitas Negeri Malang.

S. Hidayati, I. K. Kusumaningrum, F. Fajaroh, and A. R. Wijaya. (2021). Development of CMKC-coated nanomagnetite as adsorbent for Pb2+ and Cr3+ preconcentration process. AIP Conference Proceedings, 2353.

L. Y. C. Madruga, R. C. Balaban, K. C. Popat, and M. J. Kipper. (2021). Biocompatible crosslinked nanofibers of poly(vinyl alcohol)/carboxymethyl-Kappa-Carrageenan produced by a green process. Macromol. Biosci., 21(1), 1-12.

E. O. Ningrum, A. Purwanto, G. C. Rosita, A. Bagus, and T. Suharto. (2017). Konsentrasi cross-linker terhadap performa adsorben berbasis thermosensitive nipam- co -dmaaps gel crosslinker concentration on the performance of the thermosensitive-based adsorbent of nipam-co- dmaaps gel. J. Tek. Kim. USU, 12(1), 9-13.

Z. Zhou et al. (2018). Preparation and adsorption characteristics of an ion-imprinted polymer for fast removal of Ni(II) ions from aqueous solution. J. Hazard. Mater., 341, 355-364.

V. V. Kusumkar, M. Galamboš, E. Viglašová, M. Daňo, and J. Šmelková. (2021). Ion-Imprinted polymers: Synthesis, Characterization, and adsorption of radionuclides. Materials (Basel)., 14(5), 1083.

A. Masykur, S. J. Santosa, D. Siswanta, and Jumina. (2014). Synthesis of Pb(II) imprinted carboxymethyl chitosan and the application as sorbent for Pb(II) ion. Indones. J. Chem., 14(2), 152-159.

M. Yasinzai et al. (2018). Ion-imprinted polymer-based receptors for sensitive and selective detection of mercury ions in aqueous environment. J. Sensors, 2018, 1-6.

A. M. Mazrouaa, M. G. Mohamed, and M. Fekry. (2019). Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt. J. Pet., 28(2), 165-171.

S. S. Alterary and A. Alkhamees. (2021). Synthesis, surface modification, and characterization of Fe3O4@SiO2 core@shell nanostructure. Green Process. Synth., 10(1), 384-391.

A. Alangari et al. (2022). Iron oxide nanoparticles: Preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorpt. Sci. Technol., 2022.

K. Parajuli, A. K. Sah, and H. Paudyal. (2020). Green synthesis of magnetite nanoparticles using aqueous leaves extracts of azadirachta indica and its application for the removal of as(v) from water. Green Sustain. Chem., 10(04), 117-132.

E. Bertolucci et al. (2015). Chemical and magnetic properties characterization of magnetic nanoparticles. Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., 2015, 1492-1496.

R. Salam, A. Dimyati, M. Mujamilah, and M. Silalahi. (2018). Study of magnetic properties of sintered alloy Fe-Cr ODS using VSM. Journal of Physics: Conference Series, 1091(1).

K. Chie, M. Fujiwara, Y. Fujiwara, and Y. Tanimoto. (2003). Magnetic separation of metal ions. J. Phys. Chem. B, 107(51), 14374-14377.

L. Fan et al. (2011). Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohydr. Polym., 86(3), 1167-1174.

I. K. Kusumaningrum, A. R. Wijaya, S. Marfuah, and M. N Fadilah. (2019). Optimation of alkoxide formed step on carboxymethyl Kappa Carrageenan synthesis. IOP Conf. Ser. Earth Environ. Sci., 299(1), 012008.

S. Ilanlou, M. Khakbiz, G. Amoabediny, J. Mohammadi, and H. Rabbani. (2019). Carboxymethyl kappa carrageenan-modified decellularized small-diameter vascular grafts improving thromboresistance properties. J. Biomed. Mater. Res. - Part A, 107(8), 1690-1701.

J. W. Y. Liew, K. S. Loh, A. Ahmad, K. L. Lim, and W. R. Wan Daud. (2017). Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. PLoS One, 12(9), 1-15.

Helmiyati and Y. Anggraini. (2019). Nanocomposites comprising cellulose and nanomagnetite as heterogeneous catalysts for the synthesis of biodiesel from oleic acid. Int. J. Technol., 10(4), 798-807.

K. Bialik-Wąs, E. Królicka, and D. Malina. (2021). Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(Vinyl alcohol) hydrogels. Molecules, 26(8), 7-10.

N. F. Yusof, F. S. Mehamod, and F. B. Mohd Suah. (2019). Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium. J. Environ. Chem. Eng., 7(2), 103007.

A. A. Gahlan, S. Hosny, A. Fathi, and O. A. Fargaly. (2023). Removal of Zn, Pb, and Ni heavy metals from aqueous system using efficient modified-banana peel adsorbent. Curr. Chem. Lett., 12(1), 45-54.