The Effect of IAA Phytohormone (Indole-3-Acetic Acid) on the Growth, Lipid, Protein, Carbohydrate, and Pigment Content in Euglena sp.


  • Wildan Hilmi Azharul Hakim Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Tia Erfianti Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • A. Najib Dhiaurahman Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Khusnul Qonita Maghfiroh Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Ria Amelia Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Istini Nurafifah Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Dedy Kurnianto Research Centre for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
  • Dwi Umi Siswanti Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Eko Agus Suyono Faculty of Biology, Universitas Gadjah Mada, Indonesia
  • Septhian Marno Research and Technology Innovation, PT. Pertamina, Persero, Jakarta 13920, Indonesia
  • Irika Devi Research and Technology Innovation, PT. Pertamina, Persero, Jakarta 13920, Indonesia



Biofuels, Biomass, IAA (Indole-3-acetic acid) Lipid, Microalgae


Nowadays, energy consumption is massively increasing in the world. The production of biofuels from microalgae has received considerable attention recently and has the potential to supplant fossil fuels. Recent research focuses on developing the potential of microalgae as an alternative fuel. This research will focus on evaluating the effect of indole-3-acetic acid (IAA) on the growth and metabolite production of Euglena sp. The methods used in this study started with a medium preparation and cultivation using IAA treatment, where the treatment used controlled IAA 5 g/L, IAA 10 g/L, and IAA 15 g/L with three biological repetitions. Optical density (OD) was measured using a spectrophotometer (OD680), biomass was measured using the gravimetry method, lipid was calculated using Bligh and Dyer (1995), the protein was measured using Bradford solution, carbohydrates were measured using phenol sulfuric acid, and pigments were extracted using methanol and measured using a spectrophotometer. According to the findings of this study, IAA 5 g/L can enhance the growth rate. For biomass, the best result was at 10 g/L of IAA (2.216 g/L ± 0.284). Meanwhile, carbohydrates, proteins, and lipids were higher in IAA 15 g/L. Chlorophyll a, b, and total carotenoid were higher in 5 g/L of IAA. The results obtained in this study showed that the IAA hormone increased the growth and metabolite content of Euglena sp.


G. Murillo, J. Sun, S. S. Ali, Y. Yan, P. Bartocci, and Y. He. (2018). Evaluation of the kinematic viscosity in biodiesel production with waste vegetable oil, ultrasonic irradiation and enzymatic catalysis: A comparative study in two-reactors. Fuel, 227(May), 448-456. Doi: 10.1016/j.fuel.2018.04.119.

S. S. Ali, A. E. F. Abomohra, and J. Sun. (2017). Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour. Technol., 238, 425-432. Doi: 10.1016/j.biortech.2017.03.187.

A. R. B. Pereira, A. Á. B. Santos, L. L. N. Guarieiro, J. B. H. Cavalcante, and J. P. dos Anjos. (2019). Experimental evaluation of CO, NOx, formaldehyde and acetaldehyde emission rates in a combustion chamber with OEC under acoustic excitation. Energy Reports, 5, 1163-1171. Doi: 10.1016/j.egyr.2019.08.010.

U. Phusuwan, D. Atong, J. Nisamaneenate, and V. Sricharoenchaikul. (2021). Sustainable fuel production from steam reforming of waste motor oil over olivine-supported Fe catalyst. Energy Reports, 7(May), 579-590. Doi: 10.1016/j.egyr.2021.07.095.

S. He, B. Barati, X. Hu, and S. Wang. (2023). Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review. Fuel Process. Technol., 24(November), 107563. Doi: 10.1016/j.fuproc.2022.107563.

J. Jiang, B. Ye, and J. Liu. (2019). Research on the peak of CO2 emissions in the developing world: Current progress and future prospect. Appl. Energy, 235(July), 186-203. Doi: 10.1016/j.apenergy.2018.10.089.

S. S. Ali et al. (2022). Recent advances in wastewater microalgae-based biofuels production: A state-of-the-art review. Energy Reports, 8, 13253-13280. Doi: 10.1016/j.egyr.2022.09.143.

Y. S. Pradana, H. Sudibyo, E. A. Suyono, Indarto, and A. Budiman. (2017). Oil algae extraction of selected microalgae species grown in monoculture and mixed cultures for biodiesel production. Energy Procedia, 105, 277-282. Doi: 10.1016/j.egypro.2017.03.314.

Y. Sun et al. (2022). Research development on resource utilization of green tide algae from the Southern Yellow Sea. Energy Reports, 8, 295-303. Doi: 10.1016/j.egyr.2022.01.168.

R. Aniruddha, A. Rajendran, and S. Sindhu. (2022). A study on biofuel generation from microalgae species. Mater. Today Proc., 57, 1660-1665. Doi: 10.1016/j.matpr.2021.12.269.

T. S. Gendy and S. A. El-Temtamy. (2013). Commercialization potential aspects of microalgae for biofuel production: An overview. Egypt. J. Pet., 22(1), 43-51, Doi: 10.1016/j.ejpe.2012.07.001.

J. W. R. Chong et al. (2021). Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. Bioresour. Technol., 342(September), 125947. Doi: 10.1016/j.biortech.2021.125947.

J. N. Rosenberg, A. Mathias, K. Korth, M. J. Betenbaugh, and G. A. Oyler. (2011). Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation. Biomass and Bioenergy, 35(9), 3865-3876. Doi: 10.1016/j.biombioe.2011.05.014.

H. Blaas and C. Kroeze. (2014). Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe. Sci. Total Environ., 496, 45-53. Doi: 10.1016/j.scitotenv.2014.06.131.

K. Brindhadevi, T. Mathimani, E. R. Rene, S. Shanmugam, N. T. L. Chi, and A. Pugazhendhi. (2021). Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel, 284(October), 119058. Doi: 10.1016/j.fuel.2020.119058.

X. Song, B. F. Liu, F. Kong, N. Q. Ren, and H. Y. Ren. (2022). Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resour. Conserv. Recycl., 183(December), 106355. Doi: 10.1016/j.resconrec.2022.106355.

W. H. Leong et al. (2022). Dual nutrient heterogeneity modes in a continuous flow photobioreactor for optimum nitrogen assimilation to produce microalgal biodiesel. Renew. Energy, 184, 443-451. Doi: 10.1016/j.renene.2021.11.117.

T. Toyama et al. (2019). Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels, 12(1), 1-12. Doi: 10.1186/s13068-019-1544-2.

S. Kottuparambil, R. L. Thankamony, and S. Agusti. (2019). Euglena as a potential natural source of value-added metabolites. A review. Algal Res., 37(December), 154-159. Doi: 10.1016/j.algal.2018.11.024.

A. J. Kings, R. E. Raj, L. R. M. Miriam, and M. A. Visvanathan. 2017. Growth studies on microalgae Euglena sanguinea in various natural eco-friendly composite media to optimize the lipid productivity. Bioresour. Technol., 244, 1349-1357. Doi: 10.1016/j.biortech.2017.06.136.

E. S. Salama et al. 2017. Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. J. Clean. Prod., 168, 1017-1024. Doi: 10.1016/j.jclepro.2017.09.057.

P. Singh, S. Kumari, A. Guldhe, R. Misra, I. Rawat, and F. Bux. (2016). Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sustain. Energy Rev., 55, 1-16. Doi: 10.1016/j.rser.2015.11.001.

M. Cramer and J. Myers. (1952). Growth and photosynthetic characteristics of euglena gracilis. Arch. Mikrobiol., 17(1-4), 384-402. Doi: 10.1007/BF00410835.

J. Pruvost, G. Van Vooren, B. Le Gouic, A. Couzinet-Mossion, and J. Legrand. (2011). Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour. Technol., 102(1), 150-158. Doi: 10.1016/j.biortech.2010.06.153.

E. G. Bligh and W. J. Dyer. (1959). A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol., 37.

J. I. Kim, E. W. Linton, and W. Shin. (2016). Morphological and genetic diversity of euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae, 31(3), 219-230. Doi: 10.4490/algae.2016.31.9.9.

M. Janssen. (2002). Cultivation of microalgae: effect of light/dark cycles on biomass yield. Wageningen University, Wa_geningen, Ponsen&Looijen BV, The Netherland.

Z. Yu et al. (2017). The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour. Technol., 239, 87-96. Doi: 10.1016/j.biortech.2017.04.120.

A. Bajguz and A. Piotrowska-Niczyporuk. (2013). Synergistic effect of auxins and on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem., 71, 290-297. Doi: 10.1016/j.plaphy.2013.08.003.

J. Li and V. Olevano. (2022). Bethe-Salpeter equation insights into the photo-absorption function and exciton structure of chlorophyll a and b in light-harvesting complex II. J. Photochem. Photobiol. B Biol., 232(January), 112475. Doi: 10.1016/j.jphotobiol.2022.112475.

L. Ramanna, I. Rawat, and F. Bux. (2017). Light enhancement strategies improve microalgal biomass productivity. Renew. Sustain. Energy Rev., 80(June), 765-773. Doi: 10.1016/j.rser.2017.05.202.

K. Yoshioka, K. Suzuki, and T. Osanai. (2020). Effect of pH on metabolite excretion and cell morphology of Euglena gracilis under dark, anaerobic conditions. Algal Res., 51(September). 102084. Doi: 10.1016/j.algal.2020.102084.

W. J. Bligh, E. G. and Dyer. (1959). Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol., 37(8).

M. A. de Carvalho Silvello et al. (2022). Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresour. Technol., 344(September). Doi: 10.1016/j.biortech.2021.126304.

H. Chen, Y. Zheng, J. Zhan, C. He, and Q. Wang. (2017). Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnol. Biofuels, 1(1), 1-20. Doi: 10.1186/s13068-017-0839-4.

P. R. Richter et al., (2015). Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems. Life Sci. Sp. Res., 4, 1-5. Doi: 10.1016/j.lssr.2014.11.001.

A. Rinanti and R. Purwadi. (2019). Increasing carbohydrate and lipid productivity in tropical microalgae biomass as a sustainable biofuel feed stock. Energy Procedia, 158, 1215-1222. Doi: 10.1016/j.egypro.2019.01.310.

C. Michael, M. del Ninno, M. Gross, and Z. Wen. (2015). Use of wavelength-selective optical light filters for enhanced microalgal growth in different algal cultivation systems. Bioresour. Technol., 179, 473-482. Doi: 10.1016/j.biortech.2014.12.075.

I. Dahmen-Ben Moussa, H. Chtourou, F. Karray, S. Sayadi, and A. Dhouib. (2017). Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Bioresour. Technol., 238, 325-332. Doi: 10.1016/j.biortech.2017.04.008.

S. Abu-Ghosh, D. Fixler, Z. Dubinsky, and D. Iluz. (2016). Flashing light in microalgae biotechnology. Bioresour. Technol., 203, 357-363. Doi: 10.1016/j.biortech.2015.12.057.

S. Wahidin, A. Idris, and S. R. M. Shaleh. (2013). The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol., 129, 7-11. Doi: 10.1016/j.biortech.2012.11.032.