Mining of Stress-related Genes in Pigmented and Non-pigmented Rice using Gene Co-expression Network and Clustering Approaches
DOI:
https://doi.org/10.11113/mjfas.v18n5.2543Keywords:
Clustering gene co-expression network, MCL, pigmented rice, stress-resistantAbstract
Pigmented rice has been associated with stress-resistant traits, such as resistance to abiotic and biotic stresses, but the genes network that is responsible for such traits remains limited. Hence, this study aims to identify stress-related genes in the pigmented rice using computational approaches. The gene co-expression network was constructed using Pearson Correlation Coefficient (PCC) ≥ 0.9 among differentially expressed genes (DEGs) of trancriptomes between pigmented and non-pigmented rice. The gene co-expression network was clustered using Markov Cluster algorithm (MCL) to identify the functional modules and the hub genes for each module were determined. The functional analyses were performed to each module to determine the related gene ontology (GO) and pathway. Protein-protein interaction (PPI) from STRING database was used to validate the functional analyses. A total of 721 DEGs were used to construct the gene co-expression network of pigmented and non-pigmented rice varieties. Of these, 614 DEGs with 15,259 edges were identified by PCC. Using MCL, 10 clusters were identified in the gene co-expression network of pigmented and non-pigmented rice varieties. Three clusters were enriched with seven GO terms (i.e., response to stress, response to stimulus, transcription factor activity) that are related to stress-resistant traits, indicating the highly correlated genes were the stress-related genes. Interestingly, nine hub genes were found to be related to drought tolerance, disease resistance and hormone biosynthesis. Validation of hub genes using STRING database revealed that 48 hub genes were also connected in the PPI network, suggesting their potential as candidate proteins in stress-related traits. This study demonstrated that the molecular interaction network and the network clustering approach are efficient in identifying the stress-related genes, which could provide new insights in understanding plant responses to abiotic and biotic stresses.
References
Y. Shao, F. Xu, X. Sun, J. Bao, and T. Beta. (2014). Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa l.) grains at four stages of development after flowering. Food Chem., 143, 90–96. DOI: 10.1016/j.foodchem.2013.07.042.
X. Chen et al.(2019). Transcriptome and Proteome Profiling of Different Colored Rice Reveals Physiological Dynamics Involved in the Flavonoid Pathway. Int. J. Mol. Sci., 20(2463), 1–23. DOI: 10.3390/ijms20102463.
N. Ithal and A. R. Reddy. (2004). Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci., 166(6), 1505–1513. DOI: 10.1016/j.plantsci.2004.02.002.
L. Yang, L. Lei, H. L. Liu, J. Wang, H. Zheng, and D. Zou. (2020). Whole-genome mining of abiotic stress gene loci in rice. Planta, 252(5), 1–20. DOI: 10.1007/s00425-020-03488-x.
A. Raza, J. Tabassum, H. Kudapa, and R. K. Varshney. (2021). Can omics deliver temperature resilient ready-to-grow crops? Crit. Rev. Biotechnol., 1–33. DOI: 10.1080/07388551.2021.1898332.
K. Vishwakarma et al. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on current knowledge and future prospects. Front. Plant Sci., 8, 1–12. DOI: 10.3389/fpls.2017.00161.
D. L. Rushton et al. (2012). WRKY transcription factors: Key components in abscisic acid signalling, Plant Biotechnol. J., 10(1), 2–11. DOI: 10.1111/j.1467-7652.2011.00634.x.
N. Li et al. (2018). Transcriptome analysis of two contrasting rice cultivars during alkaline stress. Sci. Rep., 8(1), 1–16. DOI: 10.1038/s41598-018-27940-x.
W. Wang, Y. Li, P. Dang, S. Zhao, D. Lai, and L. Zhou. (2018). Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation. Molecules, 23, 1-50. DOI: 10.3390/molecules23123098.
E. Petrussa et al. (2013). Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci., 14(7), 14950–14973. DOI: 10.3390/ijms140714950.
M. Jain. (2012). Next-generation sequencing technologies for gene expression profiling in plants. Brief. Funct. Genomics, 11(1), 63–70. DOI: 10.1093/bfgp/elr038.
L. Zhang, S. Yu, K. Zuo, L. Luo, and K. Tang. (2012). Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One, 7(5), 1–12. DOI: 10.1371/journal.pone.0033748.
L. Zhang et al. (2019). Comprehensive meta-analysis and co-expression network analysis identify candidate genes for salt stress response in Arabidopsis. Plant Biosyst., 153(3), 367–377. DOI: 10.1080/11263504.2018.1492989.
S. Smita, A. Katiyar, D. M. Pandey, V. Chinnusamy, S. Archak, and K. C. Bansal. (2013). Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice. Bioinformation, 9(2), 72–78. DOI: 10.6026/97320630009072.
K. Aoki, Y. Ogata, and D. Shibata. (2007). Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol., 48(3), 381–390. DOI: 10.1093/pcp/pcm013.
E. A. R. Serin, H. Nijveen, H. W. M. Hilhorst, and W. Ligterink. (2016). Learning from co-expression networks: possibilities and challenges, Front. Plant Sci., 7, 1–18. DOI: 10.3389/fpls.2016.00444.
A. Fukushima, S. Kanaya, and M. Arita. (2009). Characterizing gene coexpression modules in Oryza sativa based on a graph-clustering approach, Plant Biotechnol., 26, 485-493.
Q. You et al. (2016). Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum. Sci. Rep., 6, 1–15. DOI: 10.1038/srep38436.
R. J. Schaefer et al. (2018). Integrating coexpression networks with GWAS to prioritize causal genes in Maize, Plant Cell, 30(12), 2922–2942. DOI: 10.1105/tpc.18.00299.
A. Suratanee et al. (2018). Two-state co-expression network analysis to identify genes related to salt tolerance in Thai rice. Genes (Basel)., 9(12), 1–21. DOI: 10.3390/genes9120594.
J. Du, S. Wang, C. He, B. Zhou, Y. L. Ruan, and H. Shou. (2017). Identifcation of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J. Exp. Bot., 68(8), 1955–1972. DOI: 10.1093/jxb/erw460.
Z. Lei et al. (2018). Transcriptome Analysis Reveals genes involved in flavonoid biosynthesis and accumulation in Dendrobium catenatum from different locations, Sci. Rep., 8(1), 1–16. DOI: 10.1038/s41598-018-24751-y.
F. He and S. Maslov. (2016). Pan- and core- network analysis of co-expression genes in a model plant, Sci. Rep., 6(8), 1–11. DOI: 10.1038/srep38956.
W. Hu et al. (2020). Gene co-expression network analysis provides a novel insight into the dynamic response of wheat to powdery mildew stress. J. Genet., 99(44), 1–12. DOI: 10.1007/s12041-020-01206-w.
N. K. Sarkar, Y. K. Kim, and A. Grover. (2014). Coexpression network analysis associated with call of rice seedlings for encountering heat stress, Plant Mol. Biol., 84(1–2), 125–143. DOI: 10.1007/s11103-013-0123-3.
S. Sircar and N. Parekh. (2019). Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach, 14(5), 1-7. DOI: 10.1371/journal.pone.0216068.
M. R. Abdullah-Zawawi, L. W. Tan, Z. Ab Rahman, I. Ismail, and Z. Zainal. (2022). An Integration of transcriptomic data and modular gene co-expression network analysis uncovers drought stress-related hub genes in transgenic rice overexpressing OsAbp57. Agronomy, 12(8), 1-20. DOI: 10.3390/agronomy12081959.
Z. Zeng, S. Zhang, W. Li, B. Chen, and W. Li. (2022). Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice. BMC Genomics, 23(1), 1–18. DOI: 10.1186/s12864-022-08438-3.
H. Takehisa, Y. Sato, B. Antonio, and Y. Nagamura. (2015). Coexpression network analysis of macronutrient deficiency response genes in rice. Rice, 8(24), 1-7. DOI: 10.1186/s12284-015-0059-0.
O. Contreras-López, T. C. Moyano, D. C. Soto, and R. A. Gutiérrez. (2018). Step-by-step construction of gene co-expression networks from high-throughput Arabidopsis RNA sequencing data. Methods Mol. Biol., 1761, 275–301. DOI: 10.1007/978-1-4939-7747-5_21.
M. Li, D. Li, Y. Tang, F. Wu, and J. Wang. (2017). Cytocluster: A cytoscape plugin for cluster analysis and visualization of biological networks. Int. J. Mol. Sci., 18(9), 1-6. DOI: 10.3390/ijms18091880.
S. Yun-Shin et al. (2018). Transcriptome analysis of pigmented and non-pigmented rice grain-focusing on antioxidant and micronutrient perspectives. Proc. International Conference on Biochemistry, Molecular Biology and Biotechnology 11, 15-16 August 2018, Kuala Lumpur, 11.
R. A. Zainal-Abidin et al. (2020). RNA-seq data from whole rice grains of pigmented and non-pigmented Malaysian rice varieties. Data Br., 30, 105432. DOI: 10.1016/j.dib.2020.105432.
X. Rao and R. A. Dixon. (2019). Co-expression networks for plant biology: Why and how. Acta Biochim. Biophys. Sin. (Shanghai)., 51(10), 981–988. DOI: 10.1093/abbs/gmz080.
T. Obayashi and K. Kinoshita. (2009). Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res., 16(5), 249–260. DOI: 10.1093/dnares/dsp016.
S. Ballouz, W. Verleyen, and J. Gillis. (2015). Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics, 31(13), 2123–2130. DOI: 10.1093/bioinformatics/btv118.
Y. Assenov, F. Ramírez, S. E. S. E. Schelhorn, T. Lengauer, and M. Albrecht. (2008). Computing topological parameters of biological networks. Bioinformatics, 24(2), 282–284. DOI: 10.1093/bioinformatics/btm554.
P. Shannon et al. (2008). Cytoscape: A software environment for integrated models. Genome Res., 13(22), 2498–2504. DOI: 10.1101/gr.1239303.metabolite.
L. Hua, Z. Yang, and J. Shao. (2022). Impact of network density on the efficiency of innovation networks: An agent-based simulation study. PLoS One, 17(6), 1–22. DOI: 10.1371/journal.pone.0270087.
D. Szklarczyk et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47(D1), D607–D613. DOI: 10.1093/nar/gky1131.
S. van Dam, U. Võsa, A. van der Graaf, L. Franke, and J. P. de Magalhães. (2018). Gene co-expression analysis for functional classification and gene-disease predictions. Brief. Bioinform., 194, 575–592. DOI: 10.1093/bib/bbw139.
W. Chen et al. (2022). GCEN: An easy-to-use toolkit for gene co-expression network analysis and lncRNAs annotation. Curr. Issues Mol. Biol., 44(4), 1479–1487. DOI: 10.3390/cimb44040100.
F. Wang et al. (2016). Enhanced rice blast resistance by CRISPR/ Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 11(4), 1–18. DOI: 10.1371/journal.pone.0154027.
S. Simm, K. D. Scharf, S. Jegadeesan, M. L. Chiusano, N. Firon, and E. Schleiff. (2016). Survey of genes involved in biosynthesis, transport, and signaling of phytohormones with focus on solanum lycopersicum. Bioinform. Biol. Insights, 10,185–207. DOI: 10.4137/BBI.S38425.
R. Zhang et al. (2020). TeaCoN: A database of gene co-expression network for tea plant (Camellia sinensis). BMC Genomics, 21(1), 1–9. DOI: 10.1186/s12864-020-06839-w.
S. Smita et al. (2020). Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct. Integr. Genomics, 20(1), 29–49. DOI: 10.1007/s10142-019-00697-w.
M. Mutwil et al. (2011). PlaNet: Combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell, 23(3), 895–910. DOI: 10.1105/tpc.111.083667.
S. van Dongen and C. Abreu-Goodger. (2012). Using MCL to extract clusters from networks. Methods Mol. Biol., 804, 281–295. DOI: 10.1007/978-1-61779-361-5_15.
L. F. De Filippis, in: Azooz, M. M., and Ahmad, P. (Eds.). (2016). Plant secondary metabolites: From molecular biology to health products. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress, 263–300.
R. Jan, S. Asaf, M. Numan, Lubna, and K. M. Kim. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 1–31. DOI: 10.3390/agronomy11050968.
T. Isah. (2019). Stress and defense responses in plant secondary metabolites production. Biol. Res., 52(1), 1-32. DOI: 10.1186/s40659-019-0246-3.
S. Mahapatra, B. Mandal, and T. Swarnkar. (2018). Biological networks integration based on dense module identification for gene prioritization from microarray data. Gene Reports, 12: 276–288. DOI: 10.1016/j.genrep.2018.07.008.
Y. Li et al. (2014). Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nat. Genet., 46(4), 398–404. DOI: 10.1038/ng.2923.
L. Hong, Q. Qian, D. Tang, K. Wang, M. Li, and Z. Cheng. (2012). A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype. Planta, 236(1), 141–151. DOI: 10.1007/s00425-012-1598-x.
L. Zakaria and N. Misman. (2018). The pathogen and control management of rice blast disease. Malays. J. Microbiol., 14(7), 705–714. DOI: 10.21161/mjm.113717.
Q. Ma et al. (2009). Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol., 150(1), 244–256. DOI: 10.1104/pp.108.133454.
W. Yang, Z. Lu, Y. Xiong, and J. Yao. (2017). Genome-wide identification and co-expression network analysis of the OsNF-Y gene family in rice. Crop J., 5(1),. 21–31. DOI: 10.1016/j.cj.2016.06.014.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Rabiatul Adawiah Zainal Abidin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.