Finite Element Analysis of External Fixator for Treating Femur Fracture: Analysis on Stainless Steel and Titanium as Material of External Fixator
DOI:
https://doi.org/10.11113/mjfas.v17n3.2104Keywords:
Finite Element, Stainless Steel, TitaniumAbstract
An external fixator device is a medical implant used to keep fractured bones stabilized and in alignment. It consists of pins which are placed into the bone, extending outside the surface of the skin, and attached to a rigid external rod to keep it in place. The aim of this study is to investigate the most suitable material used for the external fixator. Firstly, the 3D model of two unilateral uniplanar external fixator with the properties of titanium and stainless steel were constructed at Solidworks software with all the other parameters set to constant. Meanwhile, CT images of the lower limb were used to reconstruct a 3D model of the femur fracture at Mimics Medical software. Positioning and meshing of both the external fixator and the femur done at 3-Matics Medical and export as Patran for simulation at Marc Mentat software. 375 N load was applied at the most proximal femur to simulate stance phase of a gait cycle. From the findings, external fixator by using stainless steel as material properties have lower maximum von Mises Stress (18.40 MPa) at the femur and (103.69 MPa) at the fixator compared to the titanium (32.38 MPa) at the femur and (182.93 MPa) at the fixator. The result shows a difference of 75% of maximum von Mises Stress at the femur and the external fixator. Configuration by using stainless steel displaced 1.15 mm at the femur and 1.01 mm at the fixator which almost double value of displacement for titanium material for both femur (2.35 mm) and external fixator (2.11 mm). In conclusion, stainless steel external fixators provide better stability when compared to titanium external fixators.
References
Abd Aziz, A. U., Gan, H.S., Nasution, A.K., Abdul Kadir, M.R., Ramlee, M.H. (2019). Development and verification of three-dimensional model of femoral bone: finite element analysis. Journal of Physics: Conference Series, 1372 (1), 012014.
Abd Aziz, A. U., Abdul Wahab, A.H., Abdul Rahim, R.A., Abdul Kadir, M.R., Ramlee, M.H. (2020). A finite element study: Finding the best configuration between unilateral, hybrid and ilizarov in terms of biomechanical point of view. Injury, 51(11), 2472-2478.
Basat, P. A., Estrella, E., & Magdaluyo, E. (2020). Material selection and design of external fixator clamp for metacarpal fractures. Materials Today: Proceedings, 7(15), 2–6.
Benli, S., Aksoy, S., Havitcioǧlu, H., & Kucuk, M. (2008). Evaluation of bone plate with low-stiffness material in terms of stress distribution. Journal of Biomechanics, 41(15), 3229–3235.
Bliven, E. K., Greinwald, M., Hackl, S., & Augat, P. (2019). External fixation of the lower extremities: Biomechanical perspective and recent innovations. Injury, 50, S10–S17.
Chen, G., Wu, F. Y., Zhang, J. Q., Zhong, G. Q., & Liu, F. (2015). Sensitivities of biomechanical assessment methods for fracture healing of long bones. Medical Engineering and Physics, 37(7), 650–656.
Cheung, C.-L., Ang, S. Bin, Chadha, M., Chow, E. S.-L., Chung, Y.-S., Hew, F. L., Jaisamrarn, U., Ng, H., Takeuchi, Y., Wu, C.-H., Xia, W., Yu, J., & Fujiwara, S. (2018). An updated hip fracture projection in Asia: The Asian Federation of Osteoporosis Societies study. Osteoporosis and Sarcopenia, 4(1), 16–21.
Cuppone, M., Seedhom, B. B., Berry, E., & Ostell, A. E. (2004). Calcified Tissue International The Longitudinal Young ’ s Modulus of Cortical Bone in the Midshaft of Human Femur and its Correlation with CT Scanning Data. 302–309.
DeCamp, C. E., Johnston, S. A., Déjardin, L. M., & Schaefer, S. L. (2016). Fractures of the femur and patella. Brinker, Piermattei and Flo’s Handbook of Small Animal Orthopedics and Fracture Repair, Im, 518–596.
Donaldson, F. E., Pankaj, P., & Simpson, A. H. R. W. (2012). Bone properties affect loosening of half-pin external fixators at the pin-bone interface. Injury, 43(10), 1764–1770.
Ebrahimi, H., Rabinovich, M., Vuleta, V., Zalcman, D., Shah, S., Dubov, A., Roy, K., Siddiqui, F. S., Schemitsch, E. H., Bougherara, H., & Zdero, R. (2012). Biomechanical properties of an intact, injured, repaired, and healed femur: An experimental and computational study. Journal of the Mechanical Behavior of Biomedical Materials, 16(1), 121–135.
Egger, E. L. (1991). Complications of external fixation. A problem-oriented approach. The Veterinary Clinics of North America. Small Animal Practice, 21(4), 705–733.
Elmedin, M., Vahid, A., Nedim, P., & Nedžad, R. (2015). Finite element analysis and experimental testing of stiffness of the Sarafix external fixator. Procedia Engineering, 100(January), 1598–1607.
Frydrysek, K., Pleva, L., Učeň, O., Kubín, T., Šír, M., Madeja, R., & Žilka, L. (2013). New External Fixators for Treatment of Complicated Periprosthetic Fractures. International Journal Of Biology And Biomedical Engineering New, 7(2), 11.
Giannoudis, P. V, Kanakaris, N. K., & Tsiridis, E. (2007). Principles of internal fixation and selection of implants for periprosthetic femoral fractures
Kluk, A. W., Zhang, T., Russell, J. P., Kim, H., Hsieh, A. H., & O’Toole, R. V. (2017). Biomechanical and cost comparisons of near-far and pin-bar constructs. Orthopedics, 40(2), e238–e241.
Li, J., Qin, L., Yang, K., Ma, Z., Wang, Y., Cheng, L., & Zhao, D. (2019). Materials evolution of bone plates for internal fixation of bone fractures, a review. Journal of Materials Science & Technology, 3(5), 14–44.
Mohd Amir Shahlan, M., Nasrul Anuar, A., Mohammed Rafiq, A., & Hadi, M. (2017). Development of 3-Dimensional Model of Femur Bone Considering Cortical and Cancellous Structures. International Journal of Engineering Technology And Sciences (IJETS), 7(1), 1–8.
Mughal, U. N., Khawaja, H. A., & Moatamedi, M. (2015). Finite element analysis of human femur bone. International Journal of Multiphysics, 9(2), 101–108.
Nishijima David L; Wisner, David H; Holmes, James F, D. K. S. (2016). Mathematical modeling of fixation of a bone fragment in a new Double-needle external Fixator compared to hoffmann ii fixator. Physiology & Behavior, 176(1), 139–148.
Oken, O. F., Yildirim, A. O., & Asilturk, M. (2017). Finite element analysis of the stability of AO/OTA 43-C1 type distal tibial fractures treated with distal tibia medial anatomic plate versus anterolateral anatomic plate. Acta Orthopaedica et Traumatologica Turcica, 51(5), 404–408.
Palmer, R. H., Hulse, D. A., Hyman, W. A., & Palmer, D. R. (2009). Principles of bone healing and biomechanics of external skeletal fixation. The Veterinary Clinics of North America. Small Animal Practice, 22(1), 45–68.
Pan, M., Chai, L., Xue, F., Ding, L., Tang, G., & Lv, B. (2017). Comparisons of external fixator combined with limited internal fixation and open reduction and internal fixation for Sanders type 2 calcaneal fractures. Bone and Joint Research, 6(7), 433–438.
Praveen, R., & Jaiganesh, V. (2015). Design analysis of circular external tiba fixator to reduce the stress on bone. Biomedical Research (India), 26(4) Special Issue Applications of Rapid Prototyping Techniques in Bio-Materials ARTBM2015), S26–S28.
Radcliffe, I. A. J., & Taylor, M. (2007). Investigation into the affect of cementing techniques on load transfer in the resurfaced femoral head: A multi-femur finite element analysis. Clinical Biomechanics, 22(4), 422–430.
Ramlee, M. H., Abdul Kadir, M. R., Murali, M. R., & Kamarul, T. (2014a). Biomechanical evaluation of two commonly used external fixators in the treatment of open subtalar dislocation-A finite element analysis. Medical Engineering and Physics, 36(10), 1358–1366.
Ramlee, M. H., Abdul Kadir, M. R., Murali, M. R., & Kamarul, T. (2014b). Finite element analysis of three commonly used external fixation devices for treating Type III pilon fractures. Medical Engineering and Physics, 36(10), 1322–1330.
Ramlee, M. H. H., Zainudin, N. A., Mohd Latip, H. F., Hong Seng, G., Garcia-Nieto, E., & Abdul Kadir, M. R. (2019). Biomechanical evaluation of pin placement of external fixator in treating tranverse tibia fracture: Analysis on first and second cortex of cortical bone. Malaysian Journal of Fundamental and Applied Sciences, 15(1), 75–79.
Ramlee, M.H., Abdul Kadir, M.R., Harun, H (2014c). Three-dimensional modelling and finite element analysis of an ankle external fixator. Advanced Materials Research, 845, 183-188.
Roseiro, L. M., Neto, M. A., Amaro, A., Leal, R. P., & Samarra, M. C. (2014). External fixator configurations in tibia fractures: 1D optimization and 3D analysis comparison. Computer Methods and Programs in Biomedicine, 113(1), 360–370.
Sham, N. S. N., Osman, N. A. A., & Pingguan-Murphy, B. (2011). THE Influence Of Different Pin Materials Used For Unilateral External Fixators On Transverse Tibial Fracture. 12(Table 1), 500.
Sternick, M. B., Dallacosta, D., Bento, D. Á., & Do Reis, M. L. (2012). Relationship between rigidity of external fixator and number of pins: Computer analysis using finite elements. Revista Brasileira de Ortopedia, 47(5), 646–650
Tomanec, F., Rusnakova, S., & Zaludek, M. (2018). Optimization of the material of external fixator with FEM simulation. Materials Science Forum, 919, 275–281.
Vitins, V., Dobelis, M., Middleton, J., Limbert, G., & Knets, I. (2003). Flexural and creep properties of human jaw compact bone for FEA studies. Computer Methods in Biomechanics and Biomedical Engineering, 6(5–6), 299–303.