Anticonvulsant studies on the isolated compounds from the leaves of Scurrula parasitica L (Loranthaceae)

Authors

  • Kamal Ja’afar Muhammad Chemistry Advanced Research Centre
  • Shajarahtunnur Jamil Universiti Teknologi Malaysia
  • Norazah Basar Universiti Teknologi Malaysia
  • Mohammed Garba Magaji hmadu Bello University

DOI:

https://doi.org/10.11113/mjfas.v15n6.1375

Keywords:

Quercetin, anticonvulsant, Scurrula parasitica, pentylenetetrazole, epilepsy

Abstract

The leaves of Scurrula parasitica were effectively extracted by means of cold extraction method. Fractionation and purification of the n-hexane, ethyl acetate and methanol crude extracts yielded eight compounds. The compounds were identified as quercetin 1, quercitrin 2, kaempferol 3-O-a-L-rhamnoside 3, (+)-catechin 4, lupeol 5, lupeol palmitate 6, b-sitosterol 7 and squalene 8. Compounds 1, 4, 5 and 6 were investigated for anticonvulsant potentials using  maximal electroshock test in chicks and pentylenetetrazole-induced seizure test in mice while the effect of the compounds on motor coordination was investigated using beam walking assay in mice. The compounds did not completely protect the mice against pentylenetetrazole-induced seizure, but increased the mean onset of myoclonic jerks and spasms in the animals. Quercetin significantly (p < 0.05) increased the mean onset of spasm in the unprotected animals. The compounds also differentially protected the mice against mortality. Conversely, the compounds did not protect the chick against the MEST. Similarly, they did not significantly reduce the recovery time. In the beam walking assay, the increase in the number of foot slips observed in the study may be associated with the interaction of quercetin and (+)-catechin with the GABA system to produce clinical sedation. The findings of the present study suggest that the isolated compounds possess some mild anticonvulsant potential and may be beneficial in the management of petit mal epilepsy.

Author Biographies

Kamal Ja’afar Muhammad, Chemistry Advanced Research Centre

Sheda Science and Technology Complex,

Garki,

Abuja-Nigeria

Shajarahtunnur Jamil, Universiti Teknologi Malaysia

Department of Chemistry, Faculty of Science

Norazah Basar, Universiti Teknologi Malaysia

Department of Chemistry, Faculty of Science

Mohammed Garba Magaji, hmadu Bello University

Department of Pharmacology and Therapeutics, 

Zaria-Nigeria

References

Raza, M., Shashen, F., Choudhary, M. I., Suria, A., Rahman, A. U., Sombati, S., & Deloranzo, R. J. (2001). Anticonvulsant activities of the FS-1 sub fraction isolated from the roots of Delphinium denudatum. Phytoterapy Research, 15(5), 426-430.

Engel, J. Jr. (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of the ILAE task force on classification and terminology. Epilepsia, 42(6), 796-803.

Casino, G. D. (1994). Epilepsy: Contemporary perspectives on evaluation and treatment. Mayo Clinic Proceedings, 69(12), 1199-1211.

Engler, J. J. (1996). Surgery for seizures. The New England Journal of Medicine, 334(10), 647-653.

Stables, J. P., & Kupferberg, H. J. (1997). The NIH anticonvulsant drug development (ADD) program: Preclinical anticonvulsant screening project. In G. Avanzini, G. Regesta, P. Tanganelli, M. Avoli (Eds). Molecular and Cellular Targets for Antiepileptic Drugs (pp. 191-198) London, England: John Libbey and Company Ltd.

Kumar, S., Shukla, Y. N., Lavania, U. C., Sharma, A., & Singh, A. K. (1997). Medicinal and aromatic plants: Prospects for India. Journal of Medicinal and Aromatic Plant, 19, 361-365.

Harvey, A. L. (2008). Natural products in drugs discovery. Drug Discovery Today, 13(19-20), 894-901.

Rates, S. M. (2001). Plants as a Source of Drugs. Toxicon, 39(5), 603-619.

Fabricant, D. S., & Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives, 109(1): 69-75.

Angiosperm phylogeny group (APG). (2003). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141(4), 399-436.

Manach, C., Scalbert, A., Morand, C., Ramsey. C., & Jimenez. L. (2004). Polyphenols: Food source and bioavailability. American Journal of Clinical Nutrition, 79(5), 727-747.

Zakaria, M., & Mohd, M. A. (1994). Traditional Malay medicinal plants. Kuala Lumpur: Fajar Bakti.

USDA., & NRCS. (2009) The PLANTS database (http://plants.usda.gov, 28 August 2009). National Plant Data Center, Baton Rouge, LA USA. 70874- 4490.

Lim, Y. C., Rajabalaya, R., Shirley, H. F. L., Tennakoon, K. U., Quang-Vuong, L., Idris, A., Zulkipli, I. N., Keasberry, N., & David, S. R. (2016). Parasitic mistletoes of the genera Scurrula and Viscum: From bench to bedside. Molecules, 21(8), 1048.

Puneetha, G. K., & Amruthesh, K. N. (2016). Phytochemical screening and in vitro evaluation of antioxidant activity of various extracts of Scurrula parasitica. International Journal of Pharmacy and Biological Sciences, 6(1), 77-86.

Musa, M. A., Abdullahi, I. M., Kamal, M. J., & Magaji, G. M. (2014), Phytochemical screening and anticonvulsant studies of ethyl acetate fraction of Globimetula braunii on laboratory animals. Asian Pacific Journal of Tropical Biomedicine, 4(4), 285–289.

Quan-Yu, L., Fei, W., Lei, Z., Jie-Ming, X., Lia, P., & Yong-Hong, Z. A. (2015). Hydroxylated lupeol-based triterpenoid ester isolated from the Scurrula parasitica Parasitic on Nerium indicum. Helvetica Chimica Acta, 98(5), 627-632.

Quan-yu, L., Fei, W., Yong-Hong, Z., & Feng, N. I. (2016) Chemical constituents of Scurrula parasitica. China Journal of Chinese Material Medicine, 41(21), 3956-3561.

Swinyard, E. A., Woodhead, J. H., White, H. S., & Franlin, M. R. (1989) General principles: Experimental selection, quantification and evaluation of anticonvulsants. In R. H. Levy, R. H. Mattson, B. Melrum, J. K. Penry, F. E. Dreifuss (Eds.). Antiepileptic Drugs (3rd Edition) (pp. 85-102). New York: Raven press.

White, H. S., Johnson, M., Wolf, H. H., & Kupferberg, H. J. (1995). The early identification of anticonvulsant activity: role of the maximal electroshock and subcutaneous pentylenetetrazole seizure models. Italian Journal of Science, 16(1-2), 73-77.

Stanley, J. L, Rachael, J. L., Brown, T. A., McDonald, M. L., Dawson, R. G., & Reynolds S. D. (2005). The mouse beam walking assay offers improved sensitivity over the mouse rotarod in determining motor coordination deficits induced by benzodiazepines. Journal of Psychopharmacology, 19(3), 221-227.

Suganya, T., Fumio, I., & Siriporn, O. (2007). Antioxidant active principle isolated from Psidium guajava grown in Thailand. Scientia Pharmaceutica, 75(4), 179-193.

Hasan, S. M., Ahmed, I. M., Mondal, S., Uddin, S. J., Masud, M. M., Sadhu, S. K., & Ishibashi, M. (2006) Antioxidant, antinociceptive activity and general toxicity study of Dendrophthoe falcata and isolation of quercitrin as the major component. Oriental Pharmacy and Experimental Medicine, 6(4), 355-360.

Lee, S. Y., Young-Jin, S., Shin, M. S., Cho, Y. J., & Lee, J. (2014). Antibacterial effects of afzelin isolated from Cornus macrophylla on Pseudomonas aeruginosa, a leading cause of illness in immunocompromised individuals. Molecules, 19(3), 3173-3180.

Lin, J., & Lin, Y. (1999). Flavonoids from the leaves of Loranthus kaoi (Chao). Kiu. Journal of Food and Drug Analysis, 7(3), 185–190.

Supaluk, P., Puttirat, S., Rungrot, C., Somsak, R., & Virapong, P. (2009). New bioactive

triterpenoids and antimalarial activity of Diospyros rubra Lec. EXCLI Journal, 9, 1-10.

Appleton, R. A., & Enzell, C. R. (1971). Triterpenoids and aromatic components of deertongue leaf. Phytochemistry, 10(2), 447 – 449.

Moghaddam, F. M., Farimani, M. M., Salahvarzi, S., & Amin, G. (2007). Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evidence Based Complementary and Alternative Medicine, 4(1), 95–98.

Yang, A. M., Li, H., Liu, J. L., Guo, W. J., & Wu, R. (2013). Chemical constituents of Euphorbia altotibetica. Advanced Materials Research, 634-638, 905-908.

Joshi, D., Naidu, P. S., Singh, A., & Kulkarni, S. K. (2005). Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsion. Journal of Medicinal Food, 8(3), 392-396.

Bhutada, P., Mundhada, Y., Bansod, K., Ubgade, A., Quazi, M., & Umathe, S. (2010). Reversal by quercetin of corticotrophin releasing factor induced anxiety and depression like effect in mice. Progress in Neuropsychopharmacology and Biological Psychiatry, 34(6), 955-960.

Nassiri-Asl, M., Mortazavi, S. R., Samiee-Rad, F., Zangivand, A. A., Safdari, F., & Saroukhani, S. (2010). The effect of rutin on the development of pentylenetetrazole kindling and memory retrieval in rats. Epilepsy and Behavior, 18(1-2), 50-53.

Nassiri-Asl, M., Zamansoltani, F., Javadi, A., & Ganjvar, M. (2010). The effects of rutin on a passive avoidance test in rats. Progress in Neuropsychopharmacology and Biological Psychiatry, 34(1), 204-207.

Nassiri-Asl, M., Moghbelinejad, S., Abbasi, E., Yonesi, F., Haghighi, M. R., & Lotfizadeh, M. (2013). Effects of quercetin on oxidative stress and memory retrieval in kindled rats. Epilepsy and Behavior, 28(2), 151-155.

Azevedo, M. I., Pereira, A. F., Nogueira, R. B., Rolim, F. E., Brito, G. A., & Wong, D. V. (2013). The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Molecular Pain, 9, 53-59.

Durst, T., Merali, Z., Arnason, J. T., Sanchez-Vindas, E. P., & Poveda, A. L. (2002). Anxiolytic marcgraviaceae compositions containing betulic acid derivatives and methods. WO/2002/091858.

Sayyah, M., Nadjafnia, L., & Kamalinejad, M. (2004). Anticonvulsant activity and chemical composition of Artemisia dracunculus L. essential oil. Journal of Ethnopharmacology, 94(2-3), 283-287.

Subramaniam, S., Rho, J. M., Penix. L., Donevan, S. D., Fielding, R. P., & Rogawski, M. A. (1995). Felbamate block of the N-methyl-D-aspartate receptor. The Journal of Pharmacology and Experimental Therapeutics, 273(2), 878-886.

Prigol, M., Brüning, C. A., Godoi, B., Nogueira, C. W., & Zeni, G. (2009). m-Trifluoromethyldiphenyl diselenide attenuates pentylenetetrazole-induced seizures in mice byinhibiting GABA uptake in cerebral cortex slices. Pharmacological Reports, 61(6), 1127- 1133.

White, H. S., Wolf, H. H., Woodhead, J. H., & Kupferberg, H. J. (1998). The National Institute of programme. Screening for efficacy. In I. E. Leppik and M. A. Dichter (Eds.). Antiepileptic Drug Development: Advances in Neurology (pp. 29-39). Philadelphia: Lippincott – Raven Publishers.

Sun, X. Y., Zhang, L., Wei, C. X., Piao, H. R., & Quan, Z. S. (2009). Characterization of the anticonvulsant activity of doxepin in various experimental seizure models in mice. Pharmacology Reports, 61(2), 245-251.

Rho, J. M., & Sanker, R. (1999). The pharmacologic basis of antiepileptic drug action. Epilepsia, 40(11), 1471 – 1483.

Carter, R. J., Morton, J., & Dunnett, S. B. (2001). Motor coordination and balance in rodents. Current Protocols in Neuroscience, 15(1), 1-14.

Wallace, J. E., Krauter, E. E., & Campbell, B. A. (1980). Motor and reflexive behavior in the aging rat. Journal of Gerontology, 35(3), 364–370.

Brooks, S. P., & Dunnett, S. B. (2009). Tests to assess motor phenotype in mice: a user's guide. Nature Reviews Neuroscience, 10(7), 519–529.

Adachi, N., Tomonaga, S., Suenaga, R., Denbow, D. M., & Furuse, M. (2007). Galloyl group is not necessary for a sedative effect of catechin through GABAergic system. Letters in Drug Design & Discovery, 4(3), 163-167.

Kambe, D., Kotani, M., Yoshimoto, M., Kaku, S., Chaki, S., & Honda, K. (2010). Effects of quercetin on the sleep–wake cycle in rats: Involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep. Brain research, 1330, 83-88.

Nieoczym, D., Socala, K., Raszewski, G., & Wlaz, P. (2014). Effect of quercetin and rutin in some acute seizure models in mice. Progress in Neuropsychopharmacology and Biological Psychiatry, 54, 50-58.

Muceniece, R., Salenice, K., Rumaks, J., Krigere, L., Dzirkale, Z., Mezhaouke, R., Zharkova, O., & Klusa, V. (2008). Betulin binds to -aminobutyric acid receptors and exert anticonvulsant action in mice. Pharmacology Biochemistry and Behavior, 90(4), 712-716.

Downloads

Published

04-12-2019