Review on a new austenitic 57Fe15Cr25Ni stainless steel at temperature of 850C for 30 minutes followed by water quenching treatments
DOI:
https://doi.org/10.11113/mjfas.v15n5.1299Keywords:
57Fe15Cr25Ni austenitic steel, Water-quenching, X-ray diffraction, Electron microscope, Hardness, OxidationAbstract
Special steel demand is indispensable in nuclear field, especially as a construction material for structure of high temperature reactor. An austenite 57Fe15Cr25Ni stainless steel has been synthesized by using casting technique at temperature more than 1250°C in electromagnetic inductive-thermal furnace. The steel comprised of (%wt) 57%Fe, 15%Cr, 25%Ni, 0.34%C and less than 0.1% of other elements: titanium, phosphor, copper, niobium and sulphur. It is due to promoted for a high pressure-temperature operating system, the material must have strength, creep and corrosion resistances. To increase the strength of the material, heat treatment is needed in certain cooling media, i.e. water. As suspected to that of temperature selection of 850°C, that ferritic phase contributes to the strength of steel. The hardness of material increases up to 18% after being cooled rapidly into water medium. Even in the diffraction pattern, the ferritic phases do not grow clearly due to probably small amount of fraction. X-ray diffraction pattern just shows that ascast with an fcc’s lattice parameter of about 3.69 Å. Meanwhile, the water quenched sample has a lattice parameter which is slightly shorter than that ascast¢s lattice parameter, i.e. 3.59Å. The peak shift of the (111) plane in the profile diffraction, is shown approximately 0.079 degrees between ascast and water quenched samples, indicates the presence of residual strain that threatens the structural stability of the material. The ascast microstructure shows that austenite phase grains look very massive and illustrate irregular structures, with an average grain size of about 6-8 µm, showing coarse grains that are very different from the water quenched microstructure shown by fine grains and slightly porous. On the other hand, the viscosity (h) of quenching media has a very significant role in grain boundary formation (sensitization), because the rate of temperature drop is strongly influenced by heat diffusion from high to low temperature spaces at the surface of material. Moreover, there were no new phase formation and fatal scales in the corrosion appearance of the steel surface at 850°C after more than 15 hours of oxidation tests. Therefore, at temperatures 850°C, the steel is proven to withstand of its high temperature environmental corrosion.
References
A. E. W. Jarfors. (2016). Casting alloy design and modification, Metals, 6(15), 1-2.
N. Effendi, A. K. Jahja, Bandriana and W. A. Adi. (2012). Some data of second sequence non standard austentic ingot A2-Type, urania, Scientific Journal of Nuclear Fuel Cycle, 18(1), 48-58.
Parikin, N. Effendi, H. Mugihardjo dan A. H. Ismoyo. (2014). Studi pengaruh rol panas pada tegangan sisa bahan struktur baja A-2 non standar dengan teknik difraksi neutron, urania, Scientific Journal of Nuclear Fuel Cycle, 20(1), 33-42.
Parikin, A. H. Ismoyo, R. Iskandar and A. Dimyati, (2017). Residual stress measurements on the TIG-Weldjoint of 57Fe15Cr25Ni austenitic steel for structure material applications by means X-Ray diffraction techniques, Makara Journal of Technology, University of Indonesia, 21(2), 49-57.
I. Wahyono, R. Salam, A. Dimyati, and Parikin. (2015). Karakterisasi struktur mikro menggunakan SEM dan XRD pada ketahanan korosi baja komersial SS430 dan baja non komersial F1, Prosiding Seminar Nasional SDM Teknik Nuklir Yogyakarta, 112 – 117.
Y. Shi, B. Yang and P. K. Liaw. (2017). Corrosion-resistant high-entropy alloys: A review, Metals, 7(43), 1-18.
S. Y. P. Allain, G. Geandier, J.-C. Hell, M. Soler, F. Danoix and M. Gouné. (2017). Effects of Q&P processing conditions on austenite carbon enrichment studied by in situ high-energy X-ray diffraction experiments, Metals 7(232), 1-13.
M. Tocci, A. Pola , L. Montesano , M. Merlin , G. L. Garagnani, and G. M. L. Vecchia. (2017). Tensile behavior and impact toughness of an AlSi3MgCr alloy, Procedia Structural Integrity 3, 517–525.
Y. Hu, Y. H. Shi, X.Q. Shen and Z.-M. Wang. (2017). Microstructure, pitting corrosion resistance and impact toughness of duplex stainless steel underwater dry hyperbaric flux-cored arc welds, Materials, 10(1443), 1-18.
A. K. Singh, G. M. Reddy, and K. Srinivas Rao. (2015). Pitting corrosion resistance and bond strength of stainlesssteel overlay by friction surfacing on high strength low alloy steel, Defence Technology, 11(3), 299-307.
R. T. Loto. (2015). Pitting corrosion evaluation and inhibition of stainless steels: A review, Journal of Materials and Environmental Science, 6(10), 2750-2762.
A. Sujatno, R. Salam, B. Bandriyana, and A. Dimyati. (2015). Studi scanning electron microscopy (SEM) untuk karakterisasi proses oxidasi paduan zirkonium, Jurnal Forum Nuklir (JFN), 9(2), 44-50.
M. Dani, Parikin, A. K. Jahja, A. Dimyati, R. Iskandar, and J. Mayer. (2017). Investigation on precipitations and defects of the Fe-24Cr-2Si-0.8Mn ferritic super alloy steel, Jusami (Indonesia Science and Materials Journals), 18(4), 173-178.
Parikin, B. Sugeng, M. Dani, and S. G. Sukaryo. (2017). Ketahanan korosi temperatur tinggi baja super austenit 15% Cr-25% Ni pada temperatur 850oC, Jurnal Sains Materi Indonesia (Indonesia Materials Science Journal) 18(4), 179-184.
R. Salam, Bandriyana and A. Dimyati. (2013). Uji fungsi magnetic suspension balance (MSB) untuk penelitian material temperatur tinggi, Prosiding Seminar Nasional SDM Teknik Nuklir Yogyakarta, 242-246.
Parikin,T. H. Priyanto, A. H. Ismoyo and M. Dani. (2015). Hot-rolling effects on mechanical properties of 15%Cr-25%Ni steel plates for reactor structure materials, Jurnal Sains Materi Indonesia (Jusami), 17(1), 22-28.
D. Kim, S. Hong, J. Jang and J. Park. (2017). Determination of fluid density and viscosity by analyzing flexural wave propagations on the vibrating micro-cantilever, Sensors, 7(11), 2466-2475.
T. L. Burnett, R. Kelley, B. Winiarski, L. Contreras, M. Daly A. Gholinia M. G. Burke, and P. J. Withers. (2016). Large volume serial section tomography by Xe plasma FIB dual beam microscopy, Ultramicroscopy, 161, 119–129.
Parikin, M. Dani, A. K. Jahja, R. Iskandar, and J. Mayer. (2018). Crystal structure ivestigation of ferritic 73Fe24Cr2Si0.8Mn0.1Ni steel for multipurpouse structural material applications, International Journal of Technology, 9(1), 78-88.
N. Effendi, T. Darwinto, A. H. Ismoyo and Parikin. (2014). 24-chromium ferritic steel magnetic properties, Jurnal Sains Materi Indonesia (Indonesia Materials Science Journal), 15(4), 187-190.
J. Metsäjoki, M. Oksa, S. Tuurna, J. Lagerbom, J. Virta, S. Y. Olli and T. Suhonen. (2015). Tailoring a high temperature corrosion resistant FeNiCrAl for oxy-combustion application by thermal spray coating and HIP, Coatings 5, 709-723.