Synthesis and optimization of nano-sized bacterial-based violacein pigment using response surface methodology

Authors

  • Haryani Mohd Yatim
  • Claira Arul Aruldass
  • Mohd Amir Asyraf Mohd Hamzah
  • Wan Azlina Ahmad
  • Siti Aminah Setu Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v15n6.1271

Keywords:

Bacterial-based Violacein Pigment, Response Surface Methodology, Pigment Nanoparticles

Abstract

Violacein from Chromobacterium violaceum has raised the enthusiasm of researchers in conducting comprehensive studies on these pigments due to their diverse biological activities including antibacterial and antioxidant properties. However, a limitation related with the solubility of the violacein pigment, by which it is commonly dissolved in toxic solvents such as dimethyl sulfoxide and methanol instead of being soluble in biological fluids and water. Hence, this study provides a method to synthesis the violacein pigment in nanoscale through an encapsulation technique using chitosan-tripolyphosphate (Cs-TPP) nanoparticles. The synthesis of nanoparticles in this study involved ionic gelation between chitosan and tripolyphosphate (TPP), in which several parameters were taken into consideration in order to control the size and dispersion stability of the violacein pigment in the suspension. Preparation parameters, including the concentration of chitosan, TPP and pigment as well as the mass ratio of chitosan to TPP, were optimized using Response Surface Methodology (RSM). Minimum particle size of 149.0 nm with zeta potential of +23.40 mV was obtained at the optimal formulations of 2.33 mg/mL of chitosan, 1.5 mg/mL of TPP, and 1 ppm of violacein pigment and at mass ratio of chitosan:TPP of 7:1. This nano-sized violacein pigment is expected to be applied as safe additive, colorant, and therapeutic agents. Meanwhile, RSM in the study could provide the optimal formulations for producing stable nano-sized violacein pigment.

Author Biography

Siti Aminah Setu, Universiti Teknologi Malaysia

Department of Chemistry, Faculty of Science

References

Pereira, D. M., Valento, P., Andrade, P. B. 2014. Marine natural pigments: Chemistry, distribution and analysis. Dye Pigment, 111:124–134. doi:10.1016/ j.dyepig.2014.06.011.

Venil, C. K., Aruldass, C. A., Dufossé, L., Zakaria, Z. A., Ahmad, W. A. 2014. Current perspective on bacterial pigments: Emerging sustainable compounds with coloring and biological properties for the industry – An incisive evaluation. RSC Advances, 4:39523-39529. doi:10.1039/C4RA06162D.

Konzen, M., De Marco, D., Cordova, C. A. S., Vieira, T. O., Antônio, R. V., Creczynski-Pasa, T. B. 2006. Antioxidant properties of violacein: possible relation on its biological function. Bioorganic and Medicinal Chemistry, 14:8307–8313. doi:10.1016/j.bmc.2006.09.013.

Azevedo, M. B. M. D., Alderete, J., Jaime, A., Faljoni-alario, A., Haun, M., Duran, N. 2000. Biological activities of violacein, a new antitumoral indole derivative in an inclusion complex with β-Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 37:93–101.

Andrighetti-Fröhner, C. R., Antonio, R. V., Creczynski-Pasa, T. B., Barardi, C. R. M., Simões, C. M. O. 2003. Cytotoxicity and potential antiviral evaluation of violacein produced by Chromobacterium violaceum. Memorias de Instituto Oswaldo Cruz, 98:843–848. doi:10.1590/S0074-02762003000600023.

Sasidharan, A., Sasidharan, N. K., Amma, D. B. N. S., Vasu, R. K., Nataraja, A. V., Bhaskaran, K. 2015. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). Journal of Microbiology, 53:694–701. doi:10.1007/s12275-015-5173-6.

Aruldass, C. A., Rubiyatno, R., Venil, C. K., Ahmad, W. A. 2015. Violacein pigment production from liquid pineapple waste by Chromobacterium violaceum UTM5 and evaluation of its bioactivity. RSC Advances, 5:51524–51536. doi:10.1039/C5RA05765E.

Alshatwi, A. A., Subash-Babu, P., Antonisamy, P. 2016. Violacein induces apoptosis in human breast cancer cells through up regulation of BAX, p53 and down regulation of MDM2. Experimental and Toxicologic Pathology, 68:89–97. doi:10.1016/j.etp.2015.10.002.

Martins, D., Costa, F. T. M., Brocchi, M., Durán, N. 2011. Evaluation of the antibacterial activity of poly-(d,l-lactide-co-glycolide) nanoparticles containing violacein. Journal of Nanoparticle Research, 13:355–363. doi:10.1007/s11051-010-0037-9.

Feyzioglu, G. C., Tornuk, F. 2016. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology, 70:104–10. doi:10.1016/j.lwt.2016.02.037.

Chronopoulou, L., Massimi, M., Giardi, M. F., Cametti, C., Devirgiliis, L. C., Dentini, M. 2013. Chitosan-coated PLGA nanoparticles: A sustained drug release strategy for cell cultures. Colloids Surfaces B Biointerfaces, 103:310–317. doi:10.1016/j.colsurfb.2012.10.063.

Abul Kalam, M., Khan, A. A., Khan, S., Almalik, A., Alshamsan, A. 2016. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design. International Journal of Biological Macromolecules, 87:329–340. doi:10.1016/j.ijbiomac. 2016.02.033.

Shah, B., Khunt, D., Misra, M., Padh, H. 2016. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. International Journal of Biological Macromolecules, 89:206–218. doi:10.1016/j.ijbiomac. 2016.04.076.

Hashad, R. A., Ishak, R. A. H., Geneidi, A. S., Mansour, S. 2016. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization. International Journal of Biological Macromolecules, 91:630–639. doi:10.1016/j.ijbiomac.2016.06.014.

Gulati, N., Nagaich, U., Saraf, S. A. 2013. Intranasal delivery of chitosan nanoparticles for migraine therapy. Scientia Pharmaceutica, 81:843-854. doi:10.3797/scipharm.1208-18.

Mitra, S., Gaur, U., Ghosh, P. C., Maitra, A. N. 2001. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal of Controlled Release. 74:317–323. doi:10.1016/ S0168-3659(01)00342-X.

Gokce, Y., Cengiz, B., Yildiz, N., Calimli, A., Aktas, Z. 2014. Ultrasonication of chitosan nanoparticle suspension: Influence on particle size. Colloids Surfaces A: Physicochemical and Engineering Aspects, 462:75–81.

doi:10.1016/j.colsurfa.2014.08.028.

Santos, D. T., Meireles, M. A. 2010. Carotenoid pigments encapsulation: fundamentals, techniques and recent

trends. The Open Chemical Engineering Journal, 4:42–50. doi:10.2174/1874123101004020042.

de Pinho Neves, A. L., Milioli, C. C., Müller, L., Riella, H. G., Kuhnen, N. C., Stulzer, H. K. 2014. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids Surfaces A: Physicochemical and Engineering Aspects, 445:34–9. doi:10.1016/ j.colsurfa.2013. 12.058.

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. 2016. Response surface methodology: Process and product optimization using designed experiments. 4th ed. John Wiley & Sons., Hoboken, New Jersey.

Ahmad, W. A., Yusof, N. Z., Nordin, N., Zakaria, Z. A., Rezali, M. F. 2012. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes. Applied Biochemistry and Biotechnology, 167:1220–1234. doi:10.1007/s12010-012-9553-7.

Hussain, Z., Sahudin, S. 2016. Preparation, charactersation and colloidal stability of chitosan-tripolyphisphate nanoparticles: Optimisation of formulation and process parameters. International Journal of Pharmacy and Pharmaceutical Sciences, 8:297-308.

Rahimi, S., Moattari, R. M., Rajabi, L., Ashraf, A. 2015. Optimization of lead removal from aqueous solution using goethite/chitosan nanocomposite by response surface methodology. Colloids Surfaces A: Physicochemical and Engineering Aspects, 484:216–225. doi:10.1016/j.colsurfa.2015.07.063.

Luo, X., Guan, R., Chen, X., Tao, M., Ma, J., Zhao, J. 2014. Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in CaCo-2 cells, Nanoscale Research Letters, 2014:1–9.

Khuri, A. I., Mukhopadhyay, S. 2010. Response surface methodology. Wiley Interdisciplinary Reviews (WIREs), 2:128–149. doi: 10.1002/wics.73.

Szymańska, E., Winnicka, K. 2015. Stability of chitosan - A challenge for pharmaceutical and biomedical applications. Marine Drugs, 13:1819–1846. doi:10.3390/md13041819.

Downloads

Published

04-12-2019