Chromosome Number and Mitotic Time of Two Species of the Apiaceae Family

Authors

  • Ganies Riza Aristya Laboratory of Genetics and Breeding, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia https://orcid.org/0000-0001-9251-5076
  • Afifah Nur Aini Putri Laboratory of Genetics and Breeding, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Nurina Tahta Afwi Maulina Laboratory of Genetics and Breeding, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Franciscus Rico Kusuma Laboratory of Genetics and Breeding, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
  • Muhammad Fauzi Arif Laboratory of Biology, Department of Biology, Faculty of Mathematics and Life Sciences, Mulawarman University, Samarinda, 75242, Indonesia https://orcid.org/0000-0001-9964-1294

DOI:

https://doi.org/10.11113/mjfas.v21n4.4227

Keywords:

Apiaceae, chromosome, karyotype, squash method

Abstract

In Indonesia, the production yield and demand in vegetable cultivation must be balanced with improved production quality. Research is needed to enhance the quality of plant production, particularly in the genetic breeding of carrots and celery. This study aimed to characterize the shape, number, and size of chromosomes in two species of the Apiaceae family, specifically carrot (Daucus carota L.) and celery (Apium graveolens L.). The study applied a modified squash method, incorporating procedures for chromosome preparation such as root fixation, cell maceration, and chromosome staining. Mitotic phases were observed under the microscope, and the analysis was conducted using Image Raster 3 for length measurement, Photoscape v3.6 and Corel Draw X6 for generating karyotypes, and Microsoft Excel 2007 for creating the idiograms. The results indicate differences in the mitotic timing and chromosome characteristics between the two Apiaceae species. Carrot species (D. carota L. 'Kuroda' and 'Nantes') exhibited mitotic division from 9:30 to 11:00 am with a chromosome number 2n = 18. Celery species (A. graveolens L. 'Summer' and 'Amigo') showed mitotic division occurring from 11:30 am to 12:45 pm with a chromosome number of 2n = 22. This study can help enhance the quality of plant production, particularly in the genetic breeding of carrots and celery.

References

Li, M. Y., Hou, X. L., Wang, F., Tan, G. F., Xu, Z. S., & Xiong, A. S. (2018). Advances in the research of celery, an important Apiaceae vegetable crop. Critical Reviews in Biotechnology, 38(2), 172–183. https://doi.org/10.1080/07388551.2017.1312275

Que, F., Hou, X. L., Wang, G. L., Xu, Z. S., Tan, G. F., Li, T., et al. (2019). Advances in research on the carrot, an important root vegetable in the Apiaceae family. Horticulture Research, 6, Article 1. https://doi.org/10.1038/s41438-019-0150-6

Wang, X. J., Luo, Q., Li, T., Meng, P. H., Pu, Y. T., Liu, J. X., et al. (2022). Origin, evolution, breeding, and omics of Apiaceae: A family of vegetables and medicinal plants. Horticulture Research, 9, uhac076. https://doi.org/10.1093/hr/uhac076.

Rana, N., Ghabru, A., & Vaidya, D. (2019). Defensive function of fruits and vegetables. Journal of Pharmacognosy and Phytochemistry, 8(5), 1872–1877.

Varshney, K., & Mishra, K. (2022). An analysis of health benefits of carrot. International Journal of Innovative Research in Engineering & Management, 9(1), 211–214. https://doi.org/10.55524/ijirem.2022.9.1.40

Dias, J. S. (2012). Nutritional quality and health benefits of vegetables: A review. Food and Nutrition Sciences, 3(10), 1354–1374. https://doi.org/10.4236/fns.2012.310179

Ibrahim, M., Khan, S., Pathak, S., Mazhar, M., & Singh, H. (2023). Vitamin B-complex and its relationship with the health of vegetarian people. Natural Resources for Human Health, 3(4), 342–354. https://doi.org/10.53365/nrfhh/169824

da Silva Dias, J. C. (2014). Nutritional and health benefits of carrots and their seed extracts. Food and Nutrition Sciences, 5(22), 2147–2156. https://doi.org/10.4236/fns.2014.522227

Marcelino, G., Machate, D. J., Freitas, K. de C., Hiane, P. A., Maldonade, I. R., Pott, A., et al. (2020). β-Carotene: Preventive role for type 2 diabetes mellitus and obesity: A review. Molecules, 25(24), 5803. https://doi.org/10.3390/molecules25245803

Malhotra, S. K. (2012). Celery. In K. V. Peter (Ed.), Handbook of herbs and spices (2nd ed., Vol. 2, pp. 249–267). Elsevier. https://doi.org/10.1533/9780857095688.249

Kooti, W., & Daraei, N. (2017). A review of the antioxidant activity of celery (Apium graveolens L.). Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 1029–1034. https://doi.org/10.1177/2156587217717415

Jia, L., Shi, L., Li, J., Zeng, Y., Tang, S., Liu, W., et al. (2020). Total flavonoids from celery suppresses RANKL-induced osteoclast differentiation and bone resorption function via attenuating NF-κB and p38 pathways in RAW264.7 cells. Journal of Functional Foods, 69, 103949. https://doi.org/10.1016/j.jff.2020.103949

Sowbhagya, H. B., Srinivas, P., & Krishnamurthy, N. (2010). Effect of enzymes on extraction of volatiles from celery seeds. Food Chemistry, 120(1), 230–234. https://doi.org/10.1016/j.foodchem.2009.10.013

Kooti, W., Akbari, S. A., Asadi-Samani, M., & Ashtary-Larky, D. (2014). A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine, 1(1), 48–59.

Helaly, A. A.-D., Baek, J. P., Mady, E., Eldekashy, M., & Craker, L. (2015). Phytochemical analysis of some celery accessions. Journal of Medicinally Active Plants, 4(1), 1–7. https://doi.org/10.7275/R5542KJF

Marzouni, H. Z., Daraei, N., Kalani, N., & Kooti, W. (2016). The effect of Apium graveolens on fertility in female rats. World Journal of Pharmacy and Pharmaceutical Sciences, 5(7), 1710–1734. https://doi.org/10.13140/RG.2.1.2618.2008.

Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243, 281–296. https://doi.org/10.1007/s00425-015-2450-x

Rauf, S., Ortiz, R., Malinowski, D. P., Clarindo, W. R., Kainat, W., Shehzad, M., et al. (2021). Induced polyploidy: A tool for forage species improvement. Agriculture, 11(3), 210. https://doi.org/10.3390/agriculture11030210

Zhang, K., Wang, X., & Cheng, F. (2019). Plant polyploidy: Origin, evolution, and its influence on crop domestication. Horticultural Plant Journal, 5(6), 231–239. https://doi.org/10.1016/j.hpj.2019.11.003

Rawale, K. S., Khan, M. A., & Gill, K. S. (2019). The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in Triticum turgidum ssp. dicoccoides via a dramatic meiosis-specific increase in the expression of the 5B copy of the C-Ph1 gene. Chromosoma, 128, 561–570. https://doi.org/10.1007/s00412-019-00724-6

Li, Z., McKibben, M. T. W., Finch, G. S., Blischak, P. D., Sutherland, B. L., & Barker, M. S. (2021). Patterns and processes of diploidization in land plants. Annual Review of Plant Biology, 72, 387–410. https://doi.org/10.1146/annurev-arplant-050718

Nathewet, P., Yanagi, T., Hummer, K. E., Iwatsubo, Y., & Sone, K. (2009). Karyotype analysis in wild diploid, tetraploid and hexaploid strawberries, Fragaria (Rosaceae). Cytologia, 74(3), 355–364.

Levan, A., Fredga, K., & Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas, 52(2), 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Ahloowalia, B. S. (1965). A root tip squash technique for screening chromosome number in Lolium. Euphytica, 14(1), 170–172.

Erbar, C., & Leins, P. (2004). Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South African Journal of Botany, 70(3), 458–467. https://doi.org/10.1016/S0254-6299(15)30230-1

Thiviya, P., Gunawardena, N., Gamage, A., Madhujith, T., & Merah, O. (2022). Apiaceae family as a valuable source of biocidal components and their potential uses in agriculture. Horticulturae, 8(7), 614. https://doi.org/10.3390/horticulturae8070614

Nemeth, E., & Szekely, G. (2000). Floral biology of medical plants Apiaceae species. International Journal of Horticultural Science, 6(3), 133–136.

Zidorn, C., Jöhrer, K., Ganzera, M., Schubert, B., Sigmund, E. M., Mader, J., et al. (2005). Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. Journal of Agricultural and Food Chemistry, 53(7), 2518–2523. https://doi.org/10.1021/jf048041s

Baranska, M., Schulz, H., Baranski, R., Nothnagel, T., & Christensen, L. P. (2005). In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. Journal of Agricultural and Food Chemistry, 53(16), 6565–6571. https://doi.org/10.1021/jf0510440

Czepa, A., & Hofmann, T. (2003). Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. Journal of Agricultural and Food Chemistry, 51(13), 3865–3873. https://doi.org/10.1021/jf034085

Haq, R., Kumar, P., & Prasad, K. (2015). Hot air convective dehydration characteristics of Daucus carota var. Nantes. Cogent Food & Agriculture, 1, 1096184. https://doi.org/10.1080/23311932.2015.1096184

Salim, B., Taha, N., & Abou El-Yazied, A. (2022). Stimulating the growth, storage root yield and quality of carrot plant by phosphoric acid, potassium and boric acid foliar applications. Scientific Journal of Agricultural Sciences, 4(1), 12–22. https://doi.org/10.21608/sjas.2022.111487.1175

Isnainun, E., Tini, E. W., & Suwarto, S. (2021). Growth and results of three varieties celery (Apium graveolens L.) with addition of alternative nutrition in the hydroponic floating system. Agroland: The Agricultural Sciences Journal, 8(2), 91–98. https://doi.org/10.22487/agroland.v0i0.690

Sari, G. Y., Aziz, S. A., & Kurniawati, A. (2022). Growth and total flavonoid of three celery (Apium graveolens L.) varieties in shaded. Journal of Tropical Crop Science, 9(3), 193–198.

Iovene, M., Grzebelus, E., Carputo, D., Jiang, J., & Simon, P. W. (2008). Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. American Journal of Botany, 95(6), 793–804. https://doi.org/10.3732/ajb.0700007

Iorizzo, M., Senalik, D. A., Ellison, S. L., Grzebelus, D., Cavagnaro, P. F., Allender, C., et al. (2013). Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). American Journal of Botany, 100(5), 930–938. https://doi.org/10.3732/ajb.1300055

Singh, M., Nara, U., Kaur, K., Rani, N., & Jaswal, C. (2022). Genetic, genomic and biochemical insights of celery (Apium graveolens L.) in the era of molecular breeding. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100420. https://doi.org/10.1016/j.jarmap.2022.100420.

Hore, A. (1977). Study of the structure and behaviour of chromosomes of the different varieties of Apium graveolens (Celery). Cytologia, 42(1), 21–28.

Fo, H., Mark, G. L., Mark, R., Dy Pan, T., & Mark, Y. (1993). Centromere index derivation by a novel and convenient approach. Annals of Clinical and Laboratory Science, 23(4), 267–274.

Kakui, Y., Barrington, C., Kusano, Y., Thadani, R., Fallesen, T., Hirota, T., et al. (2022). Chromosome arm length, and a species-specific determinant, define chromosome arm width. Cell Reports, 41(2), 111753. https://doi.org/10.1016/j.celrep.2022.111753

Peruzzi, L., & Eroǧlu, H. E. (2013). Karyotype asymmetry: Again, how to measure and what to measure? Comparative Cytogenetics, 7(1), 1–9. https://doi.org/10.3897/compcytogen.v7i1.4431

Medeiros-Neto, E., Nollet, F., Moraes, A. P., & Felix, L. P. (2017). Intrachromosomal karyotype asymmetry in Orchidaceae. Genetics and Molecular Biology, 40(3), 610–619. https://doi.org/10.1590/1678-4685-gmb-2016-0264

Poignet, M., Johnson Pokorná, M., Altmanová, M., Majtánová, Z., Dedukh, D., Albrecht, T., et al. (2021). Comparison of karyotypes in two hybridizing passerine species: Conserved chromosomal structure but divergence in centromeric repeats. Frontiers in Genetics, 12, 768987. https://doi.org/10.3389/fgene.2021.768987

Fraser, J. A., Huang, J. C., Pukkila-Worley, R., Alspaugh, J. A., Mitchell, T. G., & Heitman, J. (2005). Chromosomal translocation and segmental duplication in Cryptococcus neoformans. Eukaryotic Cell, 4(2), 401–406. https://doi.org/10.1128/EC.4.2.401-406.2005

Shakoori, A. R., Aftab, S., & Al-Ghanim, K. (2017). Structural changes in chromosomes. In Chromosome structure and aberrations (pp. 245–274). Springer India. https://doi.org/10.1007/978-81-322-3673-3_12

Potapova, T., & Gorbsky, G. J. (2017). The consequences of chromosome segregation errors in mitosis and meiosis. Biology (Basel), 6(1), 1–14. https://doi.org/10.3390/biology6010012

Kuzmin, E., Baker, T. M., Van Loo, P., & Glass, L. (2024). Dynamics of karyotype evolution. Chaos, 34(2), 023105. https://doi.org/10.1063/5.0206011

Yoshida, K., & Kitano, J. (2021). Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genetics, 17(4), e1009502. https://doi.org/10.1371/journal.pgen.1009502

Wang, L., Li, J., Zhao, J., & He, C. (2015). Evolutionary developmental genetics of fruit morphological variation within the Solanaceae. Frontiers in Plant Science, 6, 248. https://doi.org/10.3389/fpls.2015.00248

Babu, A., & Verma, R. S. (1987). Chromosome structure: Euchromatin and heterochromatin. International Review of Cytology, 108, 1–60.

Fitz-James, M. H., Tong, P., Pidoux, A. L., Ozadam, H., Yang, L., White, S. A., et al. (2020). Large domains of heterochromatin direct the formation of short mitotic chromosome loops. eLife, 9, e57212. https://doi.org/10.7554/eLife.57212

Grishanin, A. (2024). Chromatin diminution as a tool to study some biological problems. Comparative Cytogenetics, 18(1), 27–49. https://doi.org/10.3897/compcytogen.17.112152

Ahmad, H. I., Ahmad, M. J., Jabbir, F., Ahmar, S., Ahmad, N., Elokil, A. A., et al. (2020). The domestication makeup: Evolution, survival, and challenges. Frontiers in Ecology and Evolution, 8, 103. https://doi.org/10.3389/fevo.2020.00103

Kaiser, S., Hennessy, M. B., & Sachser, N. (2015). Domestication affects the structure, development and stability of biobehavioural profiles. Frontiers in Zoology, 12(Suppl 1), S19. https://doi.org/10.1186/1742-9994-12-S1-S19

Yue, S., Liu, Y., Wang, X., Xu, D., Qiu, J., Liu, Q., et al. (2019). Modeling the effects of the preculture temperature on the lag phase of Listeria monocytogenes at 25°C. Journal of Food Protection, 82(12), 2100–2107. https://doi.org/10.4315/0362-028X.JFP-19-117

Downloads

Published

26-08-2025