Comparative Study of the Optoelectronic, Reactivity Descriptors, and Thermodynamic Properties for Derivatives of Fluorene, and its Hetero-Analogous (Si, NH, O, S, and Se) by Employing the DFT and TD-DFT Approaches
DOI:
https://doi.org/10.11113/mjfas.v20n4.3538Keywords:
Fluorene, DFT and TD-DFT, optoelectronic applications.Abstract
A comparative study of the optoelectronic, reactivity descriptors, and thermodynamic properties for derivatives of fluorene, and its hetero - analogous (Si, NH, O, S, and Se) was performed by employing the DFT and TD-DFT approaches in the gaseous state. Based on the DFT approach, the thermodynamic properties and molecular electrostatic potential were computed while based on the TD-DFT approach, optoelectronic properties were calculated by employing the B3LYP/6-311(d,p) level. The reactivity descriptors were calculated by using an electronic property (HOMO and LUMO energies). The calculated absorption values of investigated compounds are predicted to range from 330-643nm. Comparatively, all the investigated compounds are expected used in the field of designing new types of optoelectronic materials.
References
Forrest, S. R., & Thompson, M. E. (2007). Introduction: Organic electronics and optoelectronics. Chemical Reviews, 107(4), 923–925.
Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chemical Reviews, 107(4), 1339–1386.
Beaujuge, P. M., & Reynolds, J. R. (2010). Color control in π-conjugated organic polymers for use in electrochromic devices. Chemical Reviews, 110(1), 268–320.
Sonmez, G., Shen, C. K. F., Rubin, Y., & Wudl, F. A. (2004). Red, green, and blue (RGB) polymeric electrochromic device (PECD): The dawning of the PECD era. Angewandte Chemie, 116(12), 1524–1528.
Martín, N., Sánchez, L., Herranz, M. Á., Illescas, B., & Guldi, D. M. (2007). Electronic communication in tetrathiafulvalene (TTF)/C60 systems: Toward molecular solar energy conversion materials? Accounts of Chemical Research, 40(10), 1015–1024.
Grimsdale, A. C., Leok Chan, K., Martin, R. E., Jokisz, P. G., & Holmes, A. B. (2009). Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chemical Reviews, 109(3), 897–1091.
Katz, H. E., & Huang, J. (2009). Thin-film organic electronic devices. Annual Review of Materials Research, 39, 71–92.
Wang, C., Dong, H., Hu, W., Liu, Y., & Zhu, D. (2012). Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chemical Reviews, 112(4), 2208–2267.
Ji, L., Friedrich, A., Krummenacher, I., Eichhorn, A., Braunschweig, H., Moos, M., Hahn, S., Geyer, F. L., Tverskoy, O., Han, J., Lambert, C., Dreuw, A., Marder, T. B., & Bunz, U. H. F. (2017). Preparation, properties, and structures of the radical anions and dianions of azapentacenes. Journal of the American Chemical Society, 139(44), 15968–15976.
Richter, M., Schellhammer, K. S., Machata, P., Cuniberti, G., Popov, A., Ortmann, F., Berger, R., Müllen, K., & Feng, X. (2017). Polycyclic heteroaromatic hydrocarbons containing a benzoisoindole core. Organic Chemistry Frontiers, 4(5), 847–852.
Wang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H., & Zhang, Q. (2017). A large pyrene-fused N-heteroacene: Fifteen aromatic six-membered rings annulated in one row. Chemical Communications, 53(55), 7772–7775.
Mateo-Alonso, A. (2014). Pyrene-fused pyrazaacenes: From small molecules to nanoribbons. Chemical Society Reviews, 43(17), 6311–6324.
Tripathi, A., & Chetti, P. (2020). Enhanced charge transport properties in heteroatomic (NH, O, Se) analogs of benzotrithiophene (BTT) isomers: A DFT insight. Molecular Simulation, 46(7), 548–556.
Tri, N. N., Duong, L. V., & Nguyen, M. T. (2020). Optoelectronic properties of heptacene, its fluorinated derivatives and silole, thiophene analogues. Materials Today Communications, 24, 101054.
Lin, P.-P., Qin, G.-Y., Zhang, N.-X., Fan, J.-X., Hao, X.-L., Zou, L.-Y., & Ren, A.-M. (2020). The roles of heteroatoms and substituents on the molecular packing motif from herringbone to π-stacking: A theoretical study on electronic structures and intermolecular interaction of pentacene derivatives. Organic Electronics, 78, 105606.
Kumar, V., Tripathi, A., Koudjina, S., & Chetti, P. (2023). Benzodithiophene (BDT) and benzodiselenophene (BDSe) isomers’ charge transport properties for organic optoelectronic devices. Journal of Sulfur Chemistry, 44(4), 462–478.
Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652.
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, J., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, R., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, R. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., & Ortiz, J. V. (2009). Gaussian09. Wallingford, CT: Gaussian, Inc.
O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). CCLib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845.
Oyeneyin, O. E. (2017). Structural and solvent dependence of the electronic properties and corrosion inhibitive potentials of 1,3,4-thiadiazole and its substituted derivatives—a theoretical investigation. Physical Sciences International Journal, 16(2), 1–8.
Khan, M. F., Rashid, R. B., Hossain, M. A., & Rashid, M. A. (2017). Computational study of solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular properties of betulin, a constituent of Corypha taliera (Roxb.). Dhaka University Journal of Pharmaceutical Sciences, 16(1), 1–8.
Srivastava, K. K., Srivastava, S., & Alam, T. (2014). Theoretical study of the effects of solvents on the ground state of TCNQ. Pelagia Research Library, 5(1), 288–295.
Contreras, R., Andres, J., Safont, V. S., Campodonico, P., & Santos, J. G. (2003). A theoretical study on the relationship between nucleophilicity and ionization potentials in solution phase. Journal of Physical Chemistry A, 107(29), 5588–5593.
Cedillo, A., Contreras, R., Galván, M., Aizman, A., Andrés, J., & Safont, V. S. (2007). Nucleophilicity index from perturbed electrostatic potentials. Journal of Physical Chemistry A, 111(12), 2442–2447.
Jaramillo, P., Pérez, P., Contreras, R., Tiznado, W., & Fuentealba, P. (2006). Definition of a nucleophilicity scale. Journal of Physical Chemistry A, 110(26), 8181–8187.
Campodonico, P., Santos, J. G., Andres, J., & Contreras, R. (2004). Relationship between nucleophilicity/electrophilicity indices and reaction mechanisms for the nucleophilic substitution reactions of carbonyl compounds. Journal of Physical Organic Chemistry, 17(4), 273–281.
Gázquez, J. L., & Cedillo, A. (2007). Vela, A. Electrodonating and electroaccepting powers. Journal of Physical Chemistry A, 111(10), 1966–1970.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Manisha, Vijay Dangi, Brahamdutt Arya
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.