Assessing the Importance of Rain Gauge Stations through Network Theory
DOI:
https://doi.org/10.11113/mjfas.v21n4.4146Keywords:
Rainfall monitoring, network theory, centrality analysis, small-world, scale-freeAbstract
Understanding rainfall's spatial and temporal dynamics is pivotal for effective water resource management, especially in regions susceptible to extreme weather events. This study employs network theory to investigate rainfall distribution and variability across 21 Sungai Pahang, Malaysia monitoring stations. Utilising Gephi and GeoLayout for network visualisation and analysis, the paper reveals that the monitoring network possesses both small-world and scale-free characteristics, which offer insights into its robustness and vulnerability. Centrality measures, including degree, betweenness, and closeness, are examined to identify key nodes critical for information flow within the network. Specifically, stations with high centrality measures emerge as pivotal points for monitoring, while those with low Centrality offer valuable localised data. The study fills a crucial gap by addressing the challenges and limitations of existing rainfall monitoring networks in Malaysia, providing a nuanced understanding with broader applications in climate science and hydrology. The findings have significant implications for policymakers and practitioners involved in climate monitoring and disaster preparedness. Future work may extend this model to include additional environmental variables or adapt the methodology to other types of monitoring networks.
References
Bartzke, G. S., Ogutu, J. O., Mukhopadhyay, S., Mtui, D., Dublin, H. T., & Piepho, H. P. (2018). Rainfall trends and variation in the Maasai Mara ecosystem and their implications for animal population and biodiversity dynamics. PLoS One, 13(9), e0202814. https://doi.org/10.1371/journal.pone.0202814
Jale, J. da S., Xavier Júnior, S. F. A., Xavier, É. F. M., Stošić, T., Stošić, B., & Ferreira, T. A. E. (2019). Application of Markov chain on daily rainfall data in Paraíba-Brazil from 1995–2015. Acta Scientiarum. Technology, 41(1), 1–10. https://doi.org/10.4025/actascitechnol.v41i1.37186
Qin, H. P., Li, Z. X., & Fu, G. (2013). The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 129, 577–585. https://doi.org/10.1016/j.jenvman.2013.08.026
Hettiarachchi, S., Wasko, C., & Sharma, A. (2017). Increase in urban flood risk resulting from climate change – The role of storm temporal patterns. Hydrology and Earth System Sciences Discussions, 1–28.
Huong, H. T. L., & Pathirana, A. (2013). Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrology and Earth System Sciences, 17(1), 379–394. https://doi.org/10.5194/hess-17-379-2013
Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009
Hamed, K. H. (2009). Exact distribution of the Mann-Kendall trend test statistic for persistent data. Journal of Hydrology, 365(1–2), 86–94. https://doi.org/10.1016/j.jhydrol.2008.11.024
Rahman, M. A., Yunsheng, L., & Sultana, N. (2017). Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 129(4), 409–424. https://doi.org/10.1007/s00703-016-0479-4
Hu, Y., Yue, S., & Wang, C. Y. (2016). Water Tower of the Yellow River in a changing climate: Toward an integrated assessment. Water Resources Management, 13(3), 245–259. http://repository.tudelft.nl/assets/uuid:f53620b8-3ce5-4f4b-9b48-a27d8c0496d5/2014_UNESCO-IHE_PHD_Thesis_YURONG_HU.pdf
Kwon, T., Park, J., & Park, J. (2021). Design of optimal rainfall monitoring network using radar and road networks. Entropy, 23(378), 1–11.
Yeh, H. C., Chen, Y. C., Chang, C. H., Ho, C. H., & Wei, C. (2017). Rainfall network optimization using radar and entropy. Entropy, 19(10), 1–13. https://doi.org/10.3390/e19100553
Zhao, X., Liu, F., Wang, J., & Li, T. (2017). Evaluating influential nodes in social networks by local centrality with a coefficient. ISPRS International Journal of Geo-Information, 6(2), 35. https://doi.org/10.3390/ijgi6020035
Bahari, N. N., Expert, P., & Razak, F. A. (2023). An analysis of actors in Malay films: Small worlds, centralities and genre diversity. Mathematics, 11(5), 1252. https://doi.org/10.3390/math11051252
Zuhud, D. A. Z., Musa, M. H., Ismail, M., Bahaludin, H., & Razak, F. A. (2022). The causality and uncertainty of the COVID-19 pandemic to Bursa Malaysia Financial Services Index’s constituents. Entropy, 24(8), 1–30. https://doi.org/10.3390/e24081100
Deng, Y., Li, Q., & Lu, Y. (2015). A research on subway physical vulnerability based on network theory and FMECA. Safety Science, 80, 127–134. https://doi.org/10.1016/j.ssci.2015.07.019
Wang, Z., Bhamra, R. S., Wang, M., Xie, H., & Yang, L. (2020). Critical hazards identification and prevention of cascading escalator accidents at metro rail transit stations. International Journal of Environmental Research and Public Health, 17(10), 3400. https://doi.org/10.3390/ijerph17103400
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–13. https://doi.org/10.1002/wps.20375
Biane, C., Delaplace, F., & Klaudel, H. (2016). Networks and games for precision medicine. BioSystems, 150, 52–60. https://doi.org/10.1016/j.biosystems.2016.08.006
Rasidi, N. M., Bakar, S. A., & Razak, F. A. (2016). Modelling the correlation of PM10 concentration and location of air quality monitoring stations in Malaysia using network method. AIP Conference Proceedings, 1750(1), 020010. https://doi.org/10.1063/1.4954560
Rodríguez-Alarcón, R., & Lozano, S. (2019). A complex network analysis of Spanish river basins. Journal of Hydrology, 578, 124065. https://doi.org/10.1016/j.jhydrol.2019.124065
Rodríguez-Alarcón, R., & Lozano, S. (2022). Complex network modeling of a river basin: An application to the Guadalquivir River in Southern Spain. Journal of Hydroinformatics, 24(3), 559–573. https://doi.org/10.2166/HYDRO.2022.148
Majeed, A., & Rauf, I. (2020). Graph theory: A comprehensive survey about graph theory applications in computer science and social networks. Inventions, 5(1), 10. https://doi.org/10.3390/inventions5010010
Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97. https://doi.org/10.1103/RevModPhys.74.47
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001
Tiwari, S., Jha, S. K., & Singh, A. (2020). Quantification of node importance in rain gauge network: Influence of temporal resolution and rain gauge density. Scientific Reports, 10(1), 1–17. https://doi.org/10.1038/s41598-020-66363-5
Qi, M., Feng, M., Sun, T., & Yang, W. (2016). Resilience changes in watershed systems: A new perspective to quantify long-term hydrological shifts under perturbations. Journal of Hydrology, 539, 281–289. https://doi.org/10.1016/j.jhydrol.2016.05.039
Xu, Y., Lu, F., Zhu, K., Song, X., & Dai, Y. (2020). Exploring the clustering property and network structure of a large-scale Basin’s precipitation network: A complex network approach. Water, 12(6), 1739. https://doi.org/10.3390/W12061739
Sivakumar, B., & Woldemeskel, F. M. (2015). A network-based analysis of spatial rainfall connections. Environmental Modelling & Software, 69, 55–62. https://doi.org/10.1016/j.envsoft.2015.02.020
Jha, S. K., Zhao, H., Woldemeskel, F. M., & Sivakumar, B. (2015). Network theory and spatial rainfall connections: An interpretation. Journal of Hydrology, 527, 13–19. https://doi.org/10.1016/j.jhydrol.2015.04.035
Boers, N., Bookhagen, B., Marwan, N., Kurths, J., & Marengo, J. (2013). Complex networks identify spatial patterns of extreme rainfall events of the South American Monsoon System. Geophysical Research Letters, 40(16), 4386–4392. https://doi.org/10.1002/grl.50681
Yoon, S. S., & Lee, B. (2017). Effects of using high-density rain gauge networks and weather radar data on urban hydrological analyses. Water, 9(12), 931. https://doi.org/10.3390/w9120931
Chwala, C., & Kunstmann, H. (2019). Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. Wiley Interdisciplinary Reviews: Water, 6(2), e1337. https://doi.org/10.1002/WAT2.1337
Scarsoglio, S., Laio, F., & Ridolfi, L. (2013). Climate dynamics: A network-based approach for the analysis of global precipitation. PLoS One, 8(8), e71129. https://doi.org/10.1371/journal.pone.0071129
Su, Y., & Jiang, X. (2023). Simulation research on knowledge flow in a collaborative innovation network. Expert Systems, 40(7), e13280. https://doi.org/10.1111/exsy.13280
Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical Review E, 65(2), 026107. https://doi.org/10.1103/PhysRevE.65.026107
Pereira, T. (2010). Hub synchronization in scale-free networks. Physical Review E, 82(3), 036201. https://doi.org/10.1103/PhysRevE.82.036201
Agarwal, A., Marwan, N., Maheswaran, R., Merz, B., & Kurths, J. (2018). Quantifying the roles of single stations within homogeneous regions using complex network analysis. Journal of Hydrology, 563, 802–810. https://doi.org/10.1016/j.jhydrol.2018.06.050
Naufan, I., Sivakumar, B., Woldemeskel, F. M., Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2018). Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory. Journal of Hydrology, 556, 1232–1243. https://doi.org/10.1016/j.jhydrol.2017.05.029
Konapala, G., & Mishra, A. (2017). Review of complex networks application in hydroclimatic extremes with an implementation to characterize spatio-temporal drought propagation in continental USA. Journal of Hydrology, 555, 600–620. https://doi.org/10.1016/j.jhydrol.2017.10.033
Estrada, E., Hatano, N., & Benzi, M. (2012). The physics of communicability in complex networks. Physics Reports, 514(3), 89–119. https://doi.org/10.1016/j.physrep.2012.01.006
De la Cruz Cabrera, O., Jin, J., Noschese, S., & Reichel, L. (2022). Communication in complex networks. Applied Numerical Mathematics, 172, 186–205. https://doi.org/10.1016/j.apnum.2021.10.005
Emad, A., & Milenkovic, O. (2014). CaSPIAN: A causal compressive sensing algorithm for discovering directed interactions in gene networks. PLoS One, 9(3), e90781. https://doi.org/10.1371/journal.pone.0090781
Zemla, J. C., & Austerweil, J. L. (2018). Rogers-T. Computational Brain & Behavior.
Rahim, N. Z. A., Razak, F. A., Noorani, M. S. M., & Yusof, N. M. (2023). Comparing friends and peer tutors amidst COVID-19 using social network analysis. Mathematics, 11(4), 1053. https://doi.org/10.3390/math11041053
Sapini, M. L., Noorani, M. S. M., Razak, F. A., Alias, M. A., & Yusof, N. M. (2022). Understanding published literatures on persistent homology using social network analysis. Malaysian Journal of Fundamental and Applied Sciences, 18(4), 413–429. https://doi.org/10.11113/mjfas.v18n4.2418
Toubiana, D., & Maruenda, H. (2021). Guidelines for correlation coefficient threshold settings in metabolite correlation networks exemplified on a potato association panel. BMC Bioinformatics, 22(1), 1–14. https://doi.org/10.1186/s12859-021-03994-z
Kumar, S., & Deo, N. (2012). Correlation and network analysis of global financial indices. Physical Review E, 86(2), 026101. https://doi.org/10.1103/PhysRevE.86.026101
Suhaila, J., Deni, S. M., Zin, W. Z. W., & Jemain, A. A. (2010). Spatial patterns and trends of daily rainfall regime in Peninsular Malaysia during the southwest and northeast monsoons: 1975–2004. Meteorology and Atmospheric Physics, 110(1), 1–18. https://doi.org/10.1007/s00703-010-0108-6
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., & Roberts, N. M. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 52(3), 522–555. https://doi.org/10.1002/2014RG000464
Rahman, M., & Abdullah, S. A. (2023). Long-term trend and variability of rainfall in Bangladesh. Journal of Mathematics, Technology and Computer Mathematics, 2(1). https://doi.org/10.33140/jmtcm.02.01.03
Plouffe, C. C. F., Robertson, C., & Chandrapala, L. (2015). Comparing interpolation techniques for monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A case study of Sri Lanka. Environmental Modelling & Software, 67, 57–71. https://doi.org/10.1016/j.envsoft.2015.01.011
Quilty, J., & Adamowski, J. (2021). A maximal overlap discrete wavelet packet transform integrated approach for rainfall forecasting – A case study in the Awash River Basin (Ethiopia). Environmental Modelling & Software, 144, 105119. https://doi.org/10.1016/j.envsoft.2021.105119
Famili, A., Shen, W.-M., Weber, R., & Simoudis, E. (1997). Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1), 3–23. https://doi.org/10.3233/IDA-1997-1102
Milani, A. M. P., Loges, L. A., Paulovich, F. V., & Manssour, I. H. (2021). PrAVA: Preprocessing profiling approach for visual analytics. Information Visualization, 20(2–3), 101–122. https://doi.org/10.1177/14738716211021591
Zhu, C., & Gao, D. (2016). Influence of data preprocessing. Journal of Computational Science and Engineering, 10(2), 51–60.
Park, J., Park, J., & Choi, Y. (2022). Identification of research communities of environmental engineering and their evolution using coauthor network analysis. Environmental Modelling & Software, 149, 105320. https://doi.org/10.1016/j.envsoft.2022.105320
Hardouin, J.-B., Conroy, R., & Sébille, V. (2011). Imputation by the mean score should be avoided when validating a patient reported outcomes questionnaire by a Rasch model in presence of informative missing data. BMC Medical Research Methodology, 11(1), 105. https://doi.org/10.1186/1471-2288-11-105
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60(1), 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530
Cheema, J. (2014). A review of missing data handling methods in education research. Review of Educational Research, 84(4), 487–508. https://doi.org/10.3102/0034654314532697
Gu, J., Jia, Z., Cai, T., Song, X., & Mahmood, A. (2023). Dynamic correlation adjacency-matrix-based graph neural networks for traffic flow prediction. Sensors, 23(6), 2897. https://doi.org/10.3390/s23062897
Adler, J., & Parmryd, I. (2010). Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A, 77(8), 733–742. https://doi.org/10.1002/cyto.a.20896
Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., & Faloutsos, C. (2008). Epidemic thresholds in real networks. ACM Transactions on Information and System Security, 10(4), 1–26. https://doi.org/10.1145/1284680.1284681
Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1), Article 17. https://doi.org/10.2202/1544-6115.1128
Yan, X., Jeub, L. G. S., Flammini, A., Radicchi, F., & Fortunato, S. (2018). Weight thresholding on complex networks. Physical Review E, 98(4), 042304. https://doi.org/10.1103/PhysRevE.98.042304
Wang, H. Q., & Tsai, C. J. (2013). CorSig: A general framework for estimating statistical significance of correlation and its application to gene co-expression analysis. PLoS One, 8(10), e77429. https://doi.org/10.1371/journal.pone.0077429
Baudewig, J., Dechent, P., Merboldt, K. D., & Frahm, J. (2003). Thresholding in correlation analyses of magnetic resonance functional neuroimaging. Magnetic Resonance Imaging, 21(10), 1121–1130. https://doi.org/10.1016/j.mri.2003.08.013
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361–362. https://doi.org/10.1609/icwsm.v3i1.13937
Pavlopoulos, G. A., Paez-Espino, D., Kyrpides, N. C., & Iliopoulos, I. (2017). Empirical comparison of visualization tools for larger-scale network analysis. Advances in Bioinformatics, 2017, 1278932. https://doi.org/10.1155/2017/1278932
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. https://doi.org/10.1103/PhysRevLett.87.198701
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. https://doi.org/10.1371/journal.pcbi.0030017
Nandi, A. K., Sumana, A., & Bhattacharya, K. (2014). Social insect colony as a biological regulatory system: Modelling information flow in dominance networks. Journal of the Royal Society Interface, 11(101), 20140951. https://doi.org/10.1098/rsif.2014.0951
Masuda, N., Sakaki, M., Ezaki, T., & Watanabe, T. (2018). Clustering coefficients for correlation networks. Frontiers in Neuroinformatics, 12, 7. https://doi.org/10.3389/fninf.2018.00007
Pan, R. K., & Saramäki, J. (2011). Path lengths, correlations, and centrality in temporal networks. Physical Review E, 84(1), 016105. https://doi.org/10.1103/PhysRevE.84.016105
Humphries, M. D., Gurney, K., & Prescott, T. J. (2006). The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B: Biological Sciences, 273(1585), 503–511. https://doi.org/10.1098/rspb.2005.3354
Humphries, M. D., & Gurney, K. (2008). Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051. https://doi.org/10.1371/journal.pone.0002051
Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509
Chen, A. X., et al. (2020). Scale-free structure of cancer networks and their vulnerability to hub-directed combination therapy. bioRxiv, 2020.07.01.159657. https://doi.org/10.1101/2020.07.01.159657
Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature Communications, 10(1), 1017. https://doi.org/10.1038/s41467-019-08746-5
Barabási, A. L. (2009). Scale-free networks: A decade and beyond. Science, 325(5939), 412–413. https://doi.org/10.1126/science.1173299
Herdagdelen, A., Aygun, E., & Bingol, H. (2023). Measuring preferential attachment in a hyper-textual dictionary reference network: Eksi Sözlük. arXiv.
Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
Ibrahim, M. H., Missaoui, R., & Vaillancourt, J. (2020). Cross-face centrality: A new measure for identifying key nodes in networks based on formal concept analysis. IEEE Access, 8, 206901–206913. https://doi.org/10.1109/ACCESS.2020.3038302
Lin, S., Li, S., & Su, Y. (2022). Global importance analysis of nodes based on complex network theory. Journal of Physics: Conference Series, 2290(1), 012094. https://doi.org/10.1088/1742-6596/2290/1/012094
Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71. https://doi.org/10.1016/j.socnet.2004.11.008
Borrett, S. R. (2013). Throughflow centrality is a global indicator of the functional importance of species in ecosystems. Ecological Indicators, 32, 182–196. https://doi.org/10.1016/j.ecolind.2013.03.014
Wei, X., & Chen, W. (2019). How does a firm’s previous social network position affect innovation? Evidence from Chinese listed companies. Sustainability, 11(4), 1191. https://doi.org/10.3390/su11041191
Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1(1), 3. https://doi.org/10.1186/1753-4631-1-3
Wang, Y., Hu, Y., Di, Z., & Fan, Y. (2011). The effect of hub nodes on the community structure in scale-free networks. Physica A: Statistical Mechanics and Its Applications, 390(21–22), 4027–4033. https://doi.org/10.1016/j.physa.2011.06.031
Giancarlo, R., Greco, D., Landolina, F., & Rombo, S. E. (2018). Network centralities and node ranking. Encyclopedia of Bioinformatics and Computational Biology, 1, 950–957. https://doi.org/10.1016/B978-0-12-809633-8.20425-1
Bródka, P., Skibicki, K., Kazienko, P., & Musiał, K. (2011). A degree centrality in multi-layered social network. Proceedings of the 2011 International Conference on Computational Aspects of Social Networks (CASoN), 237–242. https://doi.org/10.1109/CASON.2011.6085951
Gregersen, I. B., Madsen, H., Rosbjerg, D., & Arnbjerg-Nielsen, K. (2013). A spatial and nonstationary model for the frequency of extreme rainfall events. Water Resources Research, 49(1), 127–136. https://doi.org/10.1029/2012WR012570
Okamoto, K., Chen, W., & Li, X. Y. (2008). Ranking of closeness centrality for large-scale social networks. Lecture Notes in Computer Science, 5059, 186–195. https://doi.org/10.1007/978-3-540-69311-6_21
Li, C., Li, Q., Van Mieghem, P., Stanley, H. E., & Wang, H. (2015). Correlation between centrality metrics and their application to the opinion model. European Physical Journal B, 88(3), 65. https://doi.org/10.1140/epjb/e2015-50671-y
van Elteren, C., Quax, R., & Sloot, P. (2022). Dynamic importance of network nodes is poorly predicted by static structural features. Physica A: Statistical Mechanics and Its Applications, 593, 126889. https://doi.org/10.1016/j.physa.2022.126889
Younis, M., Bangad, M., & Akkaya, K. (2003). Base-station repositioning for optimized performance of sensor networks. IEEE Vehicular Technology Conference, 58(5), 2956–2960. https://doi.org/10.1109/vetecf.2003.1286165
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536. https://doi.org/10.3390/w10111536
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Muhamad Luqman Sapini, Mohd Salmi Md Noorani, Mohd Almie Alias, Fatimah Abdul Razak, Nurul Zahirah Abd Rahim, Muhamad Imran Sapini, Norliza Muhamad Yusof

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














