A Molecular Docking Study on Anti-cariogenic Properties of Theaflavins against Streptococcus mutans

Authors

  • Muhammad Rizwan Shah Abdullah Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia
  • Anis Fadhlina Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
  • Hassan Ibrahim Sheikh Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nur Iman Alia Baharuddin Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia
  • Nur Hazirah Rosli Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia
  • Khairul Bariyyah Abd Halim Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v21n4.3890

Keywords:

Theaflavins, early childhood caries, anti-cariogenic, Streptococcus mutans, molecular docking

Abstract

Early childhood caries (ECC) is an aggressive manifestation of dental decay, linked to high levels of Streptococcus mutans in dental plaque. In Malaysia, over 70% of children suffer from ECC, leading to premature tooth loss, malnutrition, and reduced quality of life. Common dental-care ingredients like triclosan and triclocarban pose health risks, necessitating safer alternatives. Theaflavins, bioactive compounds in black tea, show potential as natural antimicrobial agents. However, the precise molecular interactions of theaflavins with key virulence-associated proteins of S. mutans remain underexplored. This study aims to investigate the antibacterial mechanisms of theaflavins against S. mutans using in-silico methods. PyRx was used to evaluate the binding affinities of four selected compounds, theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3ʹ-gallate (TF2B), and theaflavin-3,3ʹ-digallate (TF3), against seven S. mutans proteins (PDB 4TQX: Sortase A, PDB 6CAM: Glucan binding protein, PDB 3QE5: Cell surface protein, PDB 3VX4: Quorum sensing, PDB 3AIC: Glucosyltransferase, PDB 2W3Z: Immune evasion, PDB 3CZC: Carbohydrate uptake). All the ligands were prepared and optimised using Avogadro-1.2 prior to the molecular docking. BIOVIA Discovery visualizer was used to observe the protein-ligand interactions. Findings indicated that theaflavins exhibit significant binding affinities to various S. mutans proteins. Among all tested compounds, TF3 demonstrated the strongest binding affinities and favourable hydrogen bonding, particularly against glucan binding protein and glucosyltransferase. These results suggest that TF3 may serve as a promising lead compound for developing natural anti-caries therapeutics targeting S. mutans virulence mechanisms.

References

Anil, S., & Anand, P. S. (2017). Early childhood caries: prevalence, risk factors, and prevention. Frontiers in Pediatrics, 5, 157.

Dye, B.A. Vargas, C.M. Fryar, C.D. Ramos-Gomez, F. Isman, R. 2017. Oral health status of children in Los Angeles County and in the United States, 1999–2004. Community Dent. Oral Epidemiology, 45, 135–144.

Bilal, S., Abdulla, A. M., Andiesta, N. S., Babar, M. G., & Pau, A. (2021). Role of family functioning and health-related quality of life in pre-school children with dental caries: a cross-sectional study. Health and Quality of Life Outcomes, 19(1), 1-10.

Akmal Muhamat, N., Hasan, R., Saddki, N., Mohd Arshad, M. R., & Ahmad, M. (2021). Development and usability testing of mobile application on diet and oral health. PLoS One, 16(9), e0257035.

Almoudi, M. M., Hussein, A. S., Abu-Hassan, M. I., Saripudin, B., & Mohamad, M. S. F. (2021). The Association of Early Childhood Caries with Salivary Antimicrobial Peptide LL37 and Mutans Streptococci. Journal of Clinical Pediatric Dentistry, 45(5), 330-336.

Ferreira-Filho, J. C. C., Marre, A. T. D. O., de Sá Almeida, J. S., Lobo, L. D. A., Farah, A., Romanos, M. T. V., Maia, L.C., Valença, A.M.G. and Fonseca-Gonçalves, A. (2020). Therapeutic potential of bauhinia forficata link in dental biofilm treatment. Journal of medicinal food, 23(9), 998-1005.

Anderson, A. C., Al-Ahmad, A., Schlueter, N., Frese, C., Hellwig, E., & Binder, N. (2020). Influence of the long-term use of oral hygiene products containing stannous ions on the salivary microbiome–a randomized controlled trial. Scientific reports, 10(1), 9546.

Halden, R. U., Lindeman, A. E., Aiello, A. E., Andrews, D., Arnold, W. A., Fair, P., Fuoco, R.E., Geer, L.A., Johnson, P.I., Lohmann, R. and McNeill, K. (2017). The Florence statement on triclosan and triclocarban. Environmental health perspectives, 125(6), 064501.

Li, M., Qu, X., Miao, H., Wen, S., Hua, Z., Ma, Z., & He, Z. (2020). Spatial distribution of endemic fluorosis caused by drinking water in a high-fluorine area in Ningxia, China. Environmental Science and Pollution Research, 27, 20281-20291.

Alfhili, M. A., & Lee, M. H. (2019). Triclosan: an update on biochemical and molecular mechanisms. Oxidative medicine and cellular longevity, 2019(1), 1607304.

Fadhlina, A., Sheikh, H. I., & Lestari, W. (2023). Molecular Docking Studies of an Isolated Angucycline of Stereospermum fimbriatum, a Novel Anti-MRSA Agent. Malaysian Journal of Fundamental and Applied Sciences, 19(4), 553-562.

Awang, A. F. I., Taher, M., & Susanti, D. (2016). The mode of antimicrobial action of Cinnamomum burmannii’s essential oil & cinnamaldehyde. Jurnal Teknologi, 78(11-2).

Luo, Q., Luo, L., Zhao, J., Wang, Y., & Luo, H. (2023). Biological Potential and Mechanisms of Tea’s Bioactive Compounds in Tea: An Updated Review. Journal of Advanced Research. In press.

Friedman M. 2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research, 51, 116–134.

He, H.F. (2017). Research progress on theaflavins: efficacy, formation, and preparation. Food & Nutrition Research, 61, 1344521.

Shan Z, Nisar M. F., Li M., Zhang C, Wan C. C. (2021). Theaflavin Chemistry and Its Health Benefits. Oxidative Medicine and Cellular Longevity, 1–16.

Liu C, Hao K, Liu Z, Liu Z, Guo N. (2021). Epigallocatechin gallate (EGCG) attenuates staphylococcal alpha-hemolysin (Hla)-induced NLRP3 inflammasome activation via ROS-MAPK pathways and EGCG-Hla interactions. International Immunopharmacology, 100, 108170.

Kong, J., Xia, K., Su, X., Zheng, X., Diao, C., Yang, X., et al. (2021). Mechanistic insights into the inhibitory effect of theaflavins on virulence factors production in Streptococcus mutans. AMB Express, 11, 102.

Duque, C., Stipp, R. N., Wang, B., Smith, D. J., Höfling, J. F., Kuramitsu, H. K., et al. (2011). Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infection and Immunity, 79, 786–796.

Zhu, M., Ajdić, D., Liu, Y., Lynch, D., Merritt, J., and Banas, J. A. (2009). Role of the Streptococcus mutans irvA gene in GbpC-independent, dextran-dependent aggregation and biofilm formation. Applied and Environmental Microbiology, 75, 7037–7043.

Yussof, A., Cammalleri, B., Fayemiwo, O., Lopez, S., & Chu, T. (2022). Antibacterial and Sporicidal Activity Evaluation of Theaflavin-3, 3′-digallate. International Journal of Molecular Sciences, 23(4), 2153.

Gao, Y., Yin, J., Tu, Y. and Chen, Y.C., 2019. Theaflavin-3, 3′-digallate suppresses human ovarian carcinoma OVCAR-3 cells by regulating the checkpoint kinase 2 and p27 kip1 pathways. Molecules, 24(4), p.673.

Goc, A., Sumera, W., Rath, M. and Niedzwiecki, A. (2023). Inhibition of α-hemolysin activity of Staphylococcus aureus by theaflavin 3, 3’-digallate. Plos one, 18(8), p.e0290904.

Wang S, Wang Y, Wang Y, Duan Z, Ling Z, Wu W, Tong S, Wang H, Deng S. (2019). Theafavin-3,3’-digallate suppresses bioflm formation, acid production, and acid tolerance in Streptococcus mutans by targeting virulence factors. Frontiers in Microbiology. 10,1705.

Wallock-Richards, D. J., Marles-Wright, J., Clarke, D. J., Maitra, A., Dodds, M., Hanley, B., & Campopiano, D. J. (2015). Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chemical communications, 51(52), 10483-10485.

Mieher, J. L., Larson, M. R., Schormann, N., Purushotham, S., Wu, R., Rajashankar, K.R., Wu, H. and Deivanayagam, C. (2018). Glucan binding protein C of Streptococcus mutans mediates both sucrose-independent and sucrose-dependent adherence. Infection and Immunity, 86(7), pp.10-1128.

Bowen, W. H., & Koo, H. J. C. R. (2011). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Research, 45(1), 69-86.

Matsumoto-Nakano, M. (2018). Role of Streptococcus mutans surface proteins for biofilm formation. Japanese Dental Science Review, 54(1), 22-29.

Li, Y. H., Tang, N., Aspiras, M. B., Lau, P. C., Lee, J. H., Ellen, R. P., & Cvitkovitch, D. G. (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. Journal of Bacteriology, 184(10), 2699-2708.

Deng, D. M., Urch, J. E., ten Cate, J. M., Rao, V. A., van Aalten, D. M., & Crielaard, W. (2009). Streptococcus mutans SMU. 623c codes for a functional, metal-dependent polysaccharide deacetylase that modulates interactions with salivary agglutinin. Journal of bacteriology, 191(1), 394-402.

Lei, J., Li, L. F., & Su, X. D. (2009). Crystal structures of phosphotransferase system enzymes PtxB (IIBAsc) and PtxA (IIAAsc) from Streptococcus mutans. Journal of Molecular Biology, 386(2), 465-475.

Haron, N., Nadia, N., Farahin, P. N., Susanti, D., Hasniza, N., Bariyya, K., & Halim, A. (2021). Molecular docking of polyphenol compounds from Anacardium occidentale with alpha-glucosidase and dipeptidyl-peptidase-4 enzymes. Malaysian Journal of Fundamental and Applied Sciences, 17, 202-216.

Broni, E., Striegel, A., Ashley, C., Sakyi, P.O., Peracha, S., Velazquez, M., Bebla, K., Sodhi, M., Kwofie, S.K., Ademokunwa, A. and Khan, S. (2023). Molecular docking and dynamics simulation studies predict potential anti-ADAR2 inhibitors: Implications for the treatment of cancer, neurological, immunological and infectious diseases. International Journal of Molecular Sciences, 24, 6795

Luo, H., Liang, D. F., Bao, M. Y., Sun, R., Li, Y. Y., Li, J. Z., Wang, X., Lu, K. M. and Bao, J. K. (2017). In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. International Journal of Oral Science, 9(1), 53-62.

Alhobeira, H. A., Al Mogbel, M., Khan, S., Khan, M., Haque, S., Somvanshi, P., Wahid, M. & Mandal, R. K. (2021). Prioritization and characterization of validated biofilm blockers targeting glucosyltransferase C of Streptococcus mutans. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 335-344.

Larson, M. R., Rajashankar, K. R., Crowley, P. J., Kelly, C., Mitchell, T. J., Brady, L. J., & Deivanayagam, C. (2011). Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains. Journal of Biological Chemistry, 286(24), 21657-21666.

Downloads

Published

26-08-2025