Computational Approaches in Predicting Nonlinear Optical Properties of Azobenzene Derivatives: “A Synergistic DFT - QSPR Perspective"
DOI:
https://doi.org/10.11113/mjfas.v21n2.3881Keywords:
Azobenzene derivatives, nonlinear optical properties, density functional theory, quantitative structure property relationship.Abstract
The contribution of theoretical analysis and predictions in the development of nonlinear optics has significantly increased, successfully guiding experimental work to achieve favorable outcomes. Recent developments in nonlinear optics are discussed here through theoretical calculations involving density functional theory (DFT) and quantitative structure-property relationship (QSPR) perspectives. This study focuses on calculating the nonlinear optical (NLO) properties of azobenzene systems using computational strategies via DFT and QSPR methods. Although quantitative work on azobenzene is extensively reported, research relating this compound to NLO properties is limited, providing the main motivation for this study. Routes to calculate NLO properties are laid out and extensively discussed herein
References
Zuo, J., & You, X. (2001). Chemical studies on the nonlinear optics of coordination compounds. Chinese Science Bulletin, 46(3), 178–184.
Pate, B. D., Thorne, J. R., Click, D. R., Chisholm, M. H., & Denning, R. G. (2002). Third-order nonlinear optical properties of complexes with MM triple and quadruple bonds (M = Mo, W) at 1064 nm by degenerate four-wave mixing. Inorganic Chemistry, 41(7), 1975–1978.
Rajasekhar, B., Bodavarapu, N., Sridevi, M., Thamizhselvi, G., RizhaNazar, K., Padmanaban, R., & Swu, T. (2018). Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper (II) complexes and coordination polymers: Synthesis, structural characterization, and computational studies. Journal of Molecular Structure, 1156, 690–699.
Dalton, L. R., Günter, P., Jazbinsek, M., Sullivan, P. A., & Kwon, O. P. (2015). Organic electro-optics and photonics: Molecules, polymers and crystals. Cambridge University Press.
Leuthold, J., Koos, C., Freude, W., Alloatti, L., Palmer, R., Korn, D., & Wehrli, S. (2013). Silicon-organic hybrid electro-optical devices. IEEE Journal of Selected Topics in Quantum Electronics, 19(6), 114–126.
Luan, F., Liu, H., Gao, Y., & Zhang, X. (2009). QSPR model to predict the thermal stabilities of second-order nonlinear optical (NLO) chromophore molecules. Molecular Simulation, 35(3), 248–257.
Berhanu, W. M., Pillai, G. G., Oliferenko, A. A., & Katritzky, A. R. (2012). Quantitative structure–activity/property relationships: The ubiquitous links between cause and effect. ChemPlusChem, 77(7), 507–517.
McCoy, E. F., & Sykes, M. J. (2003). Quantum-mechanical QSAR/QSPR descriptors from momentum-space wave functions. Journal of Chemical Information and Computer Sciences, 43(2), 545–553.
Santos, C. B., Lobato, C. C., Braga, F. S., Morais, S. S., Santos, C. F., Fernandes, C. P., & Carvalho, J. C. (2014). Application of Hartree-Fock method for modeling of bioactive molecules using SAR and QSPR. Computational Molecular Bioscience, 4(1), 1–9.
Wu, K., Natarajan, B., Morkowchuk, L., Krein, M., & Breneman, C. M. (2013). From drug discovery QSAR to predictive materials QSPR: The evolution of descriptors, methods, and models. In Materials science and engineering (Chapter 16). Elsevier Inc.
Chen, Z., Dong, S., Zhong, C., Zhang, Z., Niu, L., Li, Z., & Zhang, F. (2009). Photoswitching of the third-order nonlinear optical properties of azobenzene-containing phthalocyanines based on reversible host–guest interactions. Journal of Photochemistry and Photobiology A: Chemistry, 206(2–3), 213–219.
Krawczyk, P., Kaczmarek, A., Zaleśny, R., Matczyszyn, K., Bartkowiak, W., Ziółkowski, M., & Cysewski, P. (2009). Linear and nonlinear optical properties of azobenzene derivatives. Journal of Molecular Modeling, 15(6), 581–590.
Liaros, N., Couris, S., Maggini, L., De Leo, F., Cattaruzza, F., Aurisicchio, C., & Bonifazi, D. (2013). NLO response of photoswitchable azobenzene‐based materials. ChemPhysChem, 14(13), 2961–2972.
Kondo, T., Kanai, T., & Uosaki, K. (2001). Control of the charge-transfer rate at a gold electrode modified with a self-assembled monolayer containing ferrocene and azobenzene by electro- and photochemical structural conversion of cis and trans forms of the azobenzene moiety. Langmuir, 17(20), 6317–6324.
Feng, W., Luo, W., & Feng, Y. (2012). Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: Structures, properties, and application. Nanoscale, 4(20), 6118–6134.
Siegbahn, P. E., & Blomberg, M. R. (2000). Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chemical Reviews, 100(2), 421–438.
Zhao, Y., & Truhlar, D. G. (2006). A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics, 125(19), 194101.
Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1), 215–241.
Karna, S. P., Prasad, P. N., & Dupuis, M. (1991). Nonlinear optical properties of p‐nitroaniline: Ab
Sałek, P., Vahtras, O., Helgaker, T., & Ågren, H. (2002). Density-functional theory of linear and nonlinear time-dependent molecular properties. Journal of Chemical Physics, 117(21), 9630–9645.
Scalmani, G., Frisch, M. J., Mennucci, B., Tomasi, J., Cammi, R., & Barone, V. (2006). Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. Journal of Chemical Physics, 124(9), 094107.
Kodikara, M. S., Stranger, R., & Humphrey, M. G. (2018). Computational studies of the nonlinear optical properties of organometallic complexes. Coordination Chemistry Review, 375, 389–409.
Águila, J. C., & Trejo-Durán, M. (2018). Theoretical study of the second-order nonlinear optical properties of ionic liquids. Journal of Molecular Liquids, 269, 833–838.
Alyar, H. (2013). A review on nonlinear optical properties of donor-acceptor derivatives of naphthalene and azanaphthalene. Review of Advanced Material Science, 34, 79–87.
Lakshmi, C. S. N., Balachandran, S., Arul, D. D., Ronaldo, A. A., & Hubert, J. I. (2019). DFT analysis on spectral and NLO properties of (2E)-3-[4-(dimethylamino)phenyl]-1-(naphthalen-2-yl)prop-2-en-1-one; a d-π-A chalcone derivative and its docking studies as a potent hepatoprotective agent. Chemical Data Collection, 20, 100205.
Li, H. P., Bi, Z. T., Fu, W. Y., Xu, R. F., Zhang, Y., Shen, X. P., & Han, K. (2017). Theoretical study of the spectroscopic and nonlinear optical properties of trans- and cis-4-hydroxyazobenzene. Journal of Molecular Modeling, 23(3), 79.
Babic, D., Curic, M., Molčanov, K. I., Ilc, G., & Plavec, J. (2008). Synthesis and characterization of dicyclopalladated complexes of azobenzene derivatives by experimental and computational methods. Inorganic Chemistry, 47(22), 10446–10454.
Azobenzena, M. (2020). Computational studies on nonlinear optical properties of metal complexes containing azobenzene. Malaysian Journal of Analytical Science, 24(5), 719–726.
Jaunet-Lahary, T., Chantzis, A., Chen, K. J., Laurent, A. D., & Jacquemin, D. (2014). Designing efficient azobenzene and azothiophene nonlinear optical photochromes. Journal of Physical Chemistry C, 118(49), 28831–28841.
Liu, C. G., Guan, X. H., & Su, Z. M. (2011). Computational study on redox-switchable 2D second-order nonlinear optical properties of push−pull mono-tetrathiafulvalene-bis(salicylaldiminato) Zn(II) Schiff base complexes. Journal of Physical Chemistry C, 115(13), 6024–6032.
Maidur, S. R., Patil, P. S., Ekbote, A., Chia, T. S., & Quah, C. K. (2017). Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 184, 342–354.
Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96(3), 1027–1044.
Nantasenamat, C., Isarankura-Na-Ayudhya, C., Naenna, T., & Prachayasittikul, V. (2009). A practical overview of quantitative structure-activity relationship. EXCLI Journal, 8, 74–88.
Katritzky, A. R., Kuanar, M., Slavov, S., Hall, C. D., Karelson, M., Kahn, I., & Dobchev, D. A. (2010). Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction. Chemical Reviews, 110(10), 5714–5789.
Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring rm² metrics for validation of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107(1), 194–205.
Reuter, R. (2011). Synthesis, properties, and applications of macrocyclic azobenzenes. University of Basel.
Hiroto, S. (2019). Synthesis of π‐functional molecules through oxidation of aromatic amines. Chemistry – An Asian Journal, 14(15), 2514–2523.
Reuter, R., Hostettler, N., Neuburger, M., & Wegner, H. A. (2010). Oligoazobenzenes—Switching in a new dimension. Chimia, 64(3), 180–183.
Schüürmann, G., & Funar-Timofei, S. (2003). Multilinear regression and comparative molecular field analysis (CoMFA) of azo dye−fiber affinities. 2. Inclusion of solution-phase molecular orbital descriptors. Journal of Chemical Information and Computer Sciences, 43(5), 1502–1512
Reuter, R., Hostettler, N., Neuburger, M., & Wegner, H. A. (2010). Oligoazobenzenes-switching in a new dimension. Chimia, 64(3), 180–183.
Buttingsrud, B., Alsberg, B. K., & Åstrand, P. O. (2007). Quantitative prediction of the absorption maxima of azobenzene dyes from bond lengths and critical points in the electron density. Physical Chemistry Chemical Physics, 9(18), 2226–2233.
Öberg, K., Berglund, A. U., & Eliasson, B. (2001). Prediction of nonlinear optical responses of organic compounds. Journal of Chemical Information and Computer Sciences, 41(3), 811–814.
Xu, J., Zheng, Z., Chen, B., & Zhang, Q. (2006). A linear QSPR model for prediction of maximum absorption wavelength of second-order NLO chromophores. QSAR & Combinatorial Sciences, 25(4), 372–379.
Li, G. Z., Yang, J., Song, H. F., Yang, S. S., Lu, W. C., & Chen, N. Y. (2004). Semiempirical quantum chemical method and artificial neural networks applied for λmax computation of some azo dyes. Journal of Chemical Information and Computer Sciences, 44(6), 2047–2050.
Xu, J., Chen, B., Xu, W., Zhao, S., Yi, C., & Cui, W. (2007). 3D-QSPR modeling and prediction of nonlinear optical responses of organic chromophores. Chemometrics and Intelligent Laboratory Systems, 87(2), 275–280.
Labidi, N. S. (2016). Semi-empirical and ab initio methods for calculation of polarizability (α) and the hyperpolarizability (β) of substituted polyacetylene chain. Arabian Journal of Chemistry, 9, S1252–S1259.
Liu, L., & Özsu, M. T. (Eds.). (2009). Encyclopedia of database systems (Vol. 6). Springer.
Roy, K., Kar, S., & Das, R. N. (2015). A primer on QSAR/QSPR modeling: Fundamental concepts. Springer.
Dearden, J. C. (2017). The history and development of quantitative structure-activity relationships (QSARs). In Oncology: Breakthroughs in research and practice (pp. 67–117). IGI Global.
Chtita, S., Larif, M., Ghamali, M., Adad, A., Rachid, H., Bouachrine, M., & Lakhlifi, T. (2013). Studies of two different cancer cell lines activities (MDAMB-231 and SK-N-SH) of imidazo[1,2-a]pyrazine derivatives by combining DFT and QSAR results. Studies, 2(11).
Chtita, S., Bouachrine, M., & Lakhlifi, T. (2016). Basic approaches and applications of QSAR/QSPR methods. Revue Interdisciplinaire, 1(1).
Mammino, L. (2020). Computational chemistry for green design in chemistry and pharmacy: Building awareness in the classroom. Sustainable Chemistry and Pharmacy, 18, 100283.
Cronin, M. T. (2010). Quantitative structure–activity relationships (QSARs)–applications and methodology. In Recent advances in QSAR studies (pp. 3–11). Springer.
Polishchuk, P. (2017). Interpretation of quantitative structure–activity relationship models: Past, present, and future. Journal of Chemical Information and Modeling, 57(11), 2618–2639.
Ekins, S., Bravi, G., Binkley, S., Gillespie, J. S., Ring, B. J., Wikel, J. H., & Wrighton, S. A. (2000). Three-and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metabolism and Disposition, 28(8), 994–1002.
Dudek, M., Kaczmarek-Kędziera, A., Deska, R., Trojnar, J., Jasik, P., Młynarz, P., Samoc, M., & Matczyszyn, K. (2022). Linear and nonlinear optical properties of azobenzene derivatives modified with an (amino)naphthalene moiety. The Journal of Physical Chemistry B, 126(32), 6063–6073.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mamoona Jillani , Suhaila Sapari, Syahrul Imran Abu Bakar , fazira ilyana abdul razak

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.