Maximising Bioethanol Production from Banana Stem Hydrolysate
DOI:
https://doi.org/10.11113/mjfas.v21n4.3766Keywords:
Banana waste, banana stem hydrolysate, bioethanol fermentation, nitrogen source optimisationAbstract
In recent years, various initiatives have been made to use low-cost renewable agricultural resources for biofuel production. Amongst these, banana waste has emerged as an alternative substrate for bioethanol production due to its abundance and rich carbohydrate content. This study explores the fermentable sugars in banana stem hydrolysate (BSH), which were utilised for bioethanol fermentation by Saccharomyces cerevisiae. The work was divided into preliminary investigations of BSH as a fermentation medium, optimisation of nitrogen sources used in bioethanol fermentation using BSH-based media, and scale-up of bioethanol fermentation from shake flasks to a 2 L bioreactor. Initially, BSH was prepared based on our novel 4-cycle enzymatic hydrolysis. Our results showed that the ethanol yield obtained using banana hydrolysate was 0.152, which was 1.43 folds higher than the ethanol yield produced using commercial glucose (0.106 g/g). Among the four nitrogen sources investigated (yeast extract, ammonium sulphate, urea, and peptone) 3 g/L yeast extract was found to result in the highest ethanol yield, which was 3.27 folds higher than that of the fermentation without the supplementation of nitrogen source. Scaling up the fermentation process from a shake flask to a 2 L bioreactor resulted in a specific growth rate, while maintaining a comparable bioethanol yield. In summary, this study proposes a novel approach to valorising bioethanol production from banana stems, suggesting that this technique could also be applied for bioproductions employing other types of agricultural waste.
References
Passoth, V., & Sandgren, M. (2019). Biofuel production from straw hydrolysates: Current achievements and perspectives. Applied Microbiology and Biotechnology, 103, 5105–5116.
Keche, N. D. (2019). Production of ethanol from banana pseudo stem. Addis Ababa Science and Technology University, Ethiopia.
Hossain, N., Razali, A. N., Mahlia, T. M. I., Chowdhury, T., Chowdhury, H., & Ong, H. C. (2019). Experimental investigation, techno-economic analysis and environmental impact of bioethanol production from banana stem. Energies, 12(20), 3947.
Guerrero, A. B., Ballesteros, I., & Ballesteros, M. (2018). The potential of agricultural banana waste for bioethanol production. Fuel, 213, 176–185.
Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.
Amat Jafar, N., Suhaili, N., & Awang Adeni, D. S. (2023). Enhancement of glucose recovery from banana stem by 4-cycle enzymatic hydrolysis. Research Journal of Biotechnology, 18, 192–199.
Legodi, L. M., LaGrange, D. C., Jansen van Rensburg, E. L., & Ncube, I. (2021). Enzymatic hydrolysis and fermentation of banana pseudostem hydrolysate to produce bioethanol. International Journal of Microbiology.
Araguirang, G. E., Arizala, A. J. R., Asilo, E. B. B., Batalon, J. L. S., Bello, E. B., & Madigal, J. P. T. (2020). Pre-treatment and enzymatic hydrolysis of banana (Musa acuminata x balbisiana) pseudostem for ethanol production. Agro Bali: Agricultural Journal, 3(2), 98–107.
Passadis, K., Christianides, D., Malamis, D., Barampouti, E., & Mai, S. (2022). Valorisation of source-separated food waste to bioethanol: Pilot-scale demonstration. Biomass Conversion and Biorefinery, 12(10), 4599–4609.
Hashem, M., Alamri, S. A., Asseri, T. A., Mostafa, Y. S., Lyberatos, G., & Ntaikou, I. (2021). On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co-cultures. Sustainability, 13(4), 1890.
Chohan, N. A., Aruwajoye, G., Sewsynker-Sukai, Y., & Kana, E. G. (2020). Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: Process optimization and kinetic assessment. Renewable Energy, 146, 1031–1040.
Jørgensen, H. (2009). Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 153, 44–57.
Brandt, B. A., Jansen, T., Görgens, J. F., & van Zyl, W. H. (2019). Overcoming lignocellulose‐derived microbial inhibitors: Advancing the Saccharomyces cerevisiae resistance toolbox. Biofuels, Bioproducts and Biorefining, 13(6), 1520–1536.
Ribeiro, R. S., Pohlmann, B. C., Calado, V., Bojorge, N., & Pereira Jr, N. (2019). Production of nanocellulose by enzymatic hydrolysis: Trends and challenges. Engineering in Life Sciences, 19(4), 279–291.
Sukmaningtyas, R. P. (2018). Pretreated of banana pseudo-stem as raw material for enzymatic hydrolysis and bioethanol production. MATEC Web of Conferences. EDP Sciences.
Hashem, M., Asseri, T. Y., Alamri, S., & Alrumman, S. (2019). Feasibility and sustainability of bioethanol production from starchy restaurants’ bio-wastes by new yeast strains. Waste and Biomass Valorization, 10, 1617–1626.
Thakur, S., Shrivastava, B., Ingale, S., Kuhad, R. C., & Gupte, A. (2013). Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3 Biotech, 3, 365–372.
Suhag, M., Kumar, A., & Singh, J. (2020). Saccharification and fermentation of pretreated banana leaf waste for ethanol production. SN Applied Sciences, 2, 1–9.
Shitophyta, L. M., Zhirmayanti, R. S., Khoirunnisa, H. A., Amelia, S., & Rauf, F. (2023). Production of bioethanol from Kepok banana peels (Musa acuminata x Musa balbisiana) using different types of yeast. G-Tech: Jurnal Teknologi Terapan, 7(3), 897–903.
Tan, J. S., Phapugrangkul, P., Lee, C. K., Lai, Z.-W., Bakar, M. H. A., & Murugan, P. (2019). Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 21, 101293.
Braide, W., Kanu, I., Oranusi, U., & Adeleye, S. (2016). Production of bioethanol from agricultural waste. Journal of Fundamental and Applied Sciences, 8(2), 372–386.
Harinikumar, K., Kudahettige-Nilsson, R., Devadas, A., Holmgren, M., & Sellstedt, A. (2017). Bioethanol production from four abundant Indian agricultural wastes. Biofuels.
Van-Aalst, A. C., de Valk, S. C., van Gulik, W. M., Jansen, M. L., Pronk, J. T., & Mans, R. (2022). Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production. Synthetic and Systems Biotechnology, 7(1), 554–566.
Peralta-Contreras, M., Chuck-Hernandez, C., Perez-Carrillo, E., Bando-Carranza, G., Vera-Garcia, M., & Gaxiola-Cuevas, N. (2013). Fate of free amino nitrogen during liquefaction and yeast fermentation of maize and sorghums differing in endosperm texture. Food and Bioproducts Processing, 91(1), 46–53.
Li, Z., Wang, D., & Shi, Y.-C. (2017). Effects of nitrogen source on ethanol production in very high gravity fermentation of corn starch. Journal of the Taiwan Institute of Chemical Engineers, 70, 229–235.
Appiah-Nkansah, N. B., Zhang, K., Rooney, W., & Wang, D. (2018). Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Industrial Crops and Products, 111, 247–253.
Sheikh, R. A., Al-Bar, O. A., & Soliman, Y. M. A. (2016). Biochemical studies on the production of biofuel (bioethanol) from potato peels wastes by Saccharomyces cerevisiae: Effects of fermentation periods and nitrogen source concentration. Biotechnology & Biotechnological Equipment, 30(3), 497–505.
Joginder, S. D., Ashok, K., & Sunil, K. T. (2013). Bioethanol production from starchy part of tuberous plant (potato) using Saccharomyces cerevisiae MTCC-170. African Journal of Microbiology Research, 7(46), 5253–5260.
Kumar, A., Duhan, J. S., & Gahlawat, S. (2014). Production of ethanol from tuberous plant (sweet potato) using Saccharomyces cerevisiae MTCC-170. African Journal of Biotechnology, 13(28).
Yalçin, S., & Oezbas, Z. (2008). Effects of ammonium sulphate concentration on growth and glycerol production kinetics of two endogenic wine yeast strains. Indian Journal of Biotechnology, 7(1).
Amutha, R. (2000). Improved ethanol production by a mixed culture of Saccharomyces diastaticus and Zymomonas mobilis from liquefied cassava starch. Industrial Journal Microbiology, 40, 103–107.
Darvishi, F., & Abolhasan, M. N. (2019). Optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental-design method. Fermentation, 5(1), 14.
Chan-u-tit, P., Laopaiboon, L., Jaisil, P., & Laopaiboon, P. (2013). High level ethanol production by nitrogen and osmoprotectant supplementation under very high gravity fermentation conditions. Energies, 6(2), 884–899.
Nofemele, Z., Shukla, P., Trussler, A., Permaul, K., & Singh, S. (2012). Improvement of ethanol production from sugarcane molasses through enhanced nutrient supplementation using Saccharomyces cerevisiae. Journal of Brewing and Distilling, 3(2), 29–35. https://doi.org/10.5897/JBD12.003
Tareen, A. K., Danbamrongtrakool, N., Sultan, I. N., Laemsak, N., Sirisansaneeyakul, S., & Vanichsriratana, W. (2021). Utilization of urea as a nitrogen source for ethanol production from oil palm trunk using simultaneous saccharification and fermentation. Agriculture and Natural Resources, 55(3), 448–455.
Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., & Laopaiboon, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technology, 100(18), 4176–4182.
Hess, D. C., Lu, W., Rabinowitz, J. D., & Botstein, D. (2006). Ammonium toxicity and potassium limitation in yeast. PLoS Biology, 4(11), e351.
Akpoghelie, P. O., Edo, G. I., Kasar, K. A., Zainulabdeen, K., Yousif, E., Mohammed, A. A., et al. (2024). Impact of different nitrogen sources, initial pH and varying inoculum size on the fermentation potential of Saccharomyces cerevisiae on wort obtained from sorghum substrate. Food Materials Research, 4(1).
Abli, G., Issanga, Novidzro, K., Akpo, K., & Koumaglo, K. H. (2024). High-yield bioethanol production from cashew apple in Atakpame. Oriental Journal of Chemistry, 40(6).
Tao, Z., Yuan, H., Liu, M., Liu, Q., Zhang, S., Liu, H., et al. (2023). Yeast extract: Characteristics, production, applications and future perspectives. Journal of Microbiology and Biotechnology, 33(2), 151.
Tesfaw, A., & Assefa, F. (2014). Current trends in bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor reduction, growth variables, coculture, and immobilization. International Scholarly Research Notices, 2014(1), 532852.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nurfaezzah Amat Jafar, Nurashikin Suhaili, Dayang Salwani Awang Adeni

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.














