Radiotherapy: Its Dual Nature in Cancer Treatment in Terms of Immunotherapy and Low-Dose Radiation

Authors

  • Mustapha Mohammed Karagama Department of Mathematics, Faculty of Physical Sciences, University of Maiduguri, Borno State, Nigeria https://orcid.org/0009-0004-0223-5150
  • Fuaada Mohd Siam bDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norma Alias bDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Mustapha Department of Mathematics, Faculty of Physical Sciences, University of Maiduguri, Borno State, Nigeria
  • Dalal Yahya Alzahrani Department of Mathematics, Faculty of Science, Al Baha University, Al Bahah 65528, Saudi Arabia

DOI:

https://doi.org/10.11113/mjfas.v21n4.3442

Keywords:

Radiotherapy, cancer treatment, virotherapy, radiation effects, bystander cells

Abstract

This review paper critically analyses cancer treatment, examining the intricate aspects of radiotherapy (RT) and the promising prospects of virotherapy (VT) as a viable alternative strategy. We aim to explore the diverse effects of RT, providing a critical analysis of its dual nature as an effective method for cancer eradication and a potential cause of immunosuppression. The study delves into the complex relationship between immune responses and radiation effects, emphasizing the importance of meticulous treatment planning to optimize therapeutic outcomes. Additionally, it investigates the neurological and behavioural implications of low-dose radiation (LDR) on the brain, underscoring the need for comprehensive research to assess its long-term impact. The study presented VT as a promising and innovative approach to cancer treatment. The application of genetic engineering enables the use of viruses to precisely target and eliminate cancer cells while preserving the integrity of healthy tissue. Contemporary research and ongoing clinical trials have brought attention to the potential efficacy of VT as a standalone treatment or when used in conjunction with other therapeutic approaches. This paper provided an in-depth analysis of RT’s dual nature in terms of immunotherapy (IT) and LDR, alongside the dynamic advancements in VT, this review highlights the potential of VT as a novel alternative and the pressing need for collaborative and multidisciplinary research. Hence, engaging in collaborative research within a multidisciplinary domain is highly recommended to develop a groundbreaking model that balance effective treatment with minimal adverse effects in the foreseeable future.

References

Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini-Nami, S., Mehrzadi, S., Shakeri-Zadeh, A., et al. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. Journal of Controlled Release, 235, 205–221.

Pi, F., Deng, X., Xue, Q., Zheng, L., Liu, H., Yang, F., et al. (2023). Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy. Journal of Nanobiotechnology, 21(1).

Turgeon, G., Weickhardt, A., Azad, A. A., Solomon, B., & Siva, S. (2019). Radiotherapy and immunotherapy: A synergistic effect in cancer care. Medical Journal of Australia, 210

(1), 47–53.

Williamson, C. W., Sherer, M. V., Zamarin, D., Sharabi, A. B., Dyer, B. A., Mell, L. K., et al. (2021). Immunotherapy and radiation therapy sequencing: State of the data on timing, efficacy, and safety. Cancer, 127(9), 1553–1567.

Singh, A., Anang, V., Kumari, K., Kottarath, S. K., & Verma, C. (2023). Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. Advances in Experimental Medicine and Biology, 1408, 269–310.

Atun, R., Jaffray, D. A., Barton, M. B., Bray, F., Baumann, M., Vikram, B., et al. (2015). Expanding global access to radiotherapy. The Lancet Oncology, 16(10), 1153–1186.

Withers, H. R. (1975). The Four R’s of radiotherapy. Advances in Radiation Biology, 5, 241–271.

Formenti, S. C., & Demaria, S. (2009). Systemic effects of local radiotherapy. The Lancet Oncology, 10(7), 718–726.

De Ruysscher, D., Niedermann, G., Burnet, N. G., Siva, S., Lee, A. W. M., & Hegi-Johnson, F. (2019). Radiotherapy toxicity. Nature Reviews Disease Primers, 5(1), 13.

Farhood, B., Goradel, N. H., Mortezaee, K., Khanlarkhani, N., Salehi, E., Nashtaei, M. S., et al. (2019). Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clinical and Translational Oncology, 21(3), 268–279.

He, Z., Yan, H., Zeng, W., Yang, K., & Rong, P. (2021). Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe2O4-PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy. Journal of Materials Chemistry B, 9(6), 1625–1637.

Yang, L., Du, X., Qin, Y., Wang, X., Zhang, L., Chen, Z., et al. (2022). Biomimetic multifunctional nanozymes enhanced radiosensitization for breast cancer via an X-ray triggered cascade reaction. Journal of Materials Chemistry B, 10(19), 3667–3680.

Rose-Ped, A. M., Bellm, L. A., Epstein, J. B., Gwede, C., & Fuchs, H. J. (2002). Complications of radiation therapy for head and neck cancers: The patient’s perspective. Cancer Nursing, 25(6), 461–469.

Maria, O. M., Eliopoulos, N., & Muanza, T. (2017). Radiation-induced oral mucositis. Frontiers in Oncology, 7, 89.

Sahebnasagh, M., Aksi, V., Eslami, F., Lashkardoost, H., Kasaian, J., Golmohammadzadeh, S., et al. (2023). Prevention of radiotherapy-related oral mucositis with zinc and polyherbal mouthwash: A double-blind, randomized clinical trial. European Journal of Medical Research, 28(1).

Murad, A. M., & Katz, A. (1996). Oncologia: bases clínicas do tratamento. Guanabara Koogan.

Vissink, A., Burlage, F. R., Spijkervet, F. K. L., Jansma, J., & Coppes, R. P. (2003). Prevention and treatment of the consequences of head and neck radiotherapy. Critical Reviews in Oral Biology and Medicine, 14(3), 213–225.

Khajanchi, S., & Ghosh, D. (2015). The combined effects of optimal control in cancer remission. Applied Mathematics and Computation, 271, 375–388.

Das, A., Dehingia, K., Sharmah, H. K., Park, C., Lee, J. R., Sadri, K., et al. (2021). Optimal control of effector-tumor-normal cells dynamics in presence of adoptive immunotherapy. AIMS Mathematics, 6(9), 9813–9834.

Chaurasia, R. K., Sapra, B. K., & Aswal, D. K. (2024). Interplay of immune modulation, adaptive response and hormesis: Suggestive of threshold for clinical manifestation of effects of ionizing radiation at low doses? Science of the Total Environment, 906, 167524.

Russ, E., Davis, C. M., Slaven, J. E., Bradfield, D. T., Selwyn, R. G., & Day, R. M. (2022). Comparison of the medical uses and cellular effects of high and low linear energy transfer radiation. Toxics, 10(3), 133.

Baeyens, A., Abrantes, A. M., Ahire, V., Ainsbury, E. A., Baatout, S., Baselet, B., et al. (2023). Basic concepts of radiation biology. In Radiobiology Textbook (pp. 25–81). Springer.

Campbell, N. A., Reece, J. B., & Urry, L. A. (2002). Biology (6th ed.). Benjamin Cummings.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darell, J. (2000). Molecular cell biology (4th ed.). W. H. Freeman.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). Garland Science.

Souri, M., Soltani, M., Kashkooli, F. M., Shahvandi, M. K., Chiani, M., Shariati, F. S., et al. (2022). Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 16, 100342.

Wu, Y., Song, Y., Wang, R., & Wang, T. (2023). Molecular mechanisms of tumor resistance to radiotherapy. Molecular Cancer, 22(1), 96.

Wang, R., Sun, Y., Li, C., Xue, Y., & Ba, X. (2023). Targeting the DNA damage response for cancer therapy. International Journal of Molecular Sciences, 24(5), 4567.

Deng, S., Vlatkovic, T., Li, M., Zhan, T., Veldwijk, M. R., & Herskind, C. (2022). Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers, 14(19), 4874.

Mladenova, V., Mladenov, E., Stuschke, M., & Iliakis, G. (2022). DNA damage clustering after ionizing radiation and consequences in the processing of chromatin breaks. Molecules, 27(5), 1547.

Liachovitzky, C. (2023). Human anatomy and physiology preparatory course. LibreTexts.

Russ, E., Davis, C. M., Slaven, J. E., Bradfield, D. T., Selwyn, R. G., & Day, R. M. (2022). Comparison of the medical uses and cellular effects of high and low linear energy transfer radiation. Toxics, 10(3), 133.

Heidari, S. M., & Golsorkhi, M. (2020). Fullerene (C60) evaluation for photodynamic therapy. In World Congress on Recent Advances in Nanotechnology (pp. 122-1–122-2). Avestia Publishing.

Elkaf, M., Meskaf, A., & Allali, K. (2021). Dynamics of cancer cells with immunotherapy and virotherapy. Communications in Mathematical Biology and Neuroscience, 2021, 1–20.

National Cancer Institute. (2021). What is cancer? https://www.cancer.gov/about-cancer/understanding/what-is-cancer

American Cancer Society. (2021). What is cancer? https://www.cancer.org/cancer/cancer-basics/what-is-cancer.html

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

Warburg, O. (1956). On the origin of cancer cells. Science, 123(3191), 309–314.

Swann, J. B., & Smyth, M. J. (2007). Immune surveillance of tumors. Journal of Clinical Investigation, 117(5), 1137–1146.

Verywell Health. (2023). Cancer cells vs normal cells: How they are different. Dotdash Meredith.

Zhang, Z., Li, K., & Hong, M. (2022). Radiation-induced bystander effect and cytoplasmic irradiation studies with microbeams. Biology, 11(4), 523.

Miranda, S., Correia, M., Dias, A. G., Pestana, A., Soares, P., Nunes, J., et al. (2020). Evaluation of the role of mitochondria in the non-targeted effects of ionizing radiation using cybrid cellular models. Scientific Reports, 10(1), 1–12.

Ballarini, F., Carante, M. P., Embriaco, A., & Ramos, R. L. (2022). Effects of ionizing radiation in biomolecules, cells and tissue/organs: Basic mechanisms and applications for cancer therapy, medical imaging and radiation protection. AIMS Biophysics, 9(2), 108–112.

National Institute of Environmental Health Sciences (NIEHS). (2021). Radiation health effects. https://www.niehs.nih.gov/health/topics/agents/radiation/index.cfm

Shuryak, I., & Brenner, D. J. (2020). Review of quantitative mechanistic models of radiation-induced non-targeted effects (NTE). Radiation Protection Dosimetry, 192(2), 236–252.

Murphy, K., Weaver, C., & Janeway, C. (2017). Janeway’s immunobiology (9th ed.). Garland Science.

Abbas, A. K., Lichtman, A. H., & Pillai, S. (2021). Cellular and molecular immunology (10th ed.). Elsevier.

Kumar, V., Abbas, A. K., & Aster, J. C. (2022). Robbins basic pathology (11th ed.). Elsevier.

Winslow, T. (2007). Circulatory system. National Cancer Institute.

United States Nuclear Regulatory Commission (NRC). (2021). Health effects of radiation. https://www.nrc.gov/about-nrc/radiation/health-effects.html

World Health Organization (WHO). (2021). Ionizing radiation. https://www.who.int/ionizing_radiation/en/

United States Environmental Protection Agency (EPA). (2021). Radiation protection. https://www.epa.gov/radiation-protection

International Atomic Energy Agency (IAEA). (2021). Radiation protection of patients. https://www.iaea.org/topics/radiation-protection/patient-protection

Grissom, M. P. (2010). Radiation protection and dosimetry: An introduction to health physics. Radiation Protection Dosimetry, 138(4), 407–409.

Attix, F. H. (2008). Introduction to radiological physics and radiation dosimetry. John Wiley & Sons.

Stouten, S., Balkenende, B., Roobol, L., Lunel, S. V., Badie, C., & Dekkers, F. (2022). Hyper-radiosensitivity affects low-dose acute myeloid leukemia incidence in a mathematical model. Radiation and Environmental Biophysics, 61(3), 361–373.

Barsoumian, H. B., Sezen, D., Menon, H., Younes, A. I., Hu, Y., He, K., et al. (2022). High plus low dose radiation strategy in combination with TIGIT and PD1 blockade to promote systemic antitumor responses. Cancers, 14(3), 687.

Barsoumian, H. B., Ramapriyan, R., Younes, A. I., Caetano, M. S., Menon, H., Comeaux, N. I., et al. (2020). Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. Journal for ImmunoTherapy of Cancer, 8(1), e000537.

Patel, R. R., He, K., Barsoumian, H. B., Chang, J. Y., Tang, C., Verma, V., et al. (2021). High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiotherapy and Oncology, 162, 60–67.

Ji, H., & Zhou, Z. (2022). A ‘hybrid’ radiotherapy regimen designed for immunomodulation: Combining high-dose radiotherapy with low-dose radiotherapy. Cancers, 14(3), 687.

Papaspyropoulos, A., Hazapis, O., Lagopati, N., Polyzou, A., Papanastasiou, A. D., Liontos, M., et al. (2021). The role of circular RNAs in DNA damage response and repair. Cancers, 13(13), 3312.

Zhu, Q., Liang, F., Cai, S., Luo, X., Duo, T., Liang, Z., et al. (2021). KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death & Disease, 12(8), 750.

Slezak, R., Smigiel, R., Obersztyn, E., Pollak, A., Dawidziuk, M., Wiszniewski, W., et al. (2021). Further delineation of phenotype and genotype of primary microcephaly syndrome with cortical malformations associated with mutations in the WDR62 gene. Genes, 12(6), 891.

Shen, W., Ma, Y., Qi, H., Wang, W., He, J., Xiao, F., et al. (2021). Kinetics model of DNA double-strand break repair in eukaryotes. DNA Repair, 106, 103176.

Aricthota, S., Rana, P. P., & Haldar, D. (2022). Histone acetylation dynamics in repair of DNA double-strand breaks. Frontiers in Genetics, 13, 926217.

Oberdoerffer, P., & Miller, K. M. (2022). Histone H2A variants: Diversifying chromatin to ensure genome integrity. Seminars in Cell & Developmental Biology, 135, 4–12.

Heylmann, D., Ponath, V., Kindler, T., & Kaina, B. (2021). Comparison of DNA repair and radiosensitivity of different blood cell populations. Scientific Reports, 11(1), 1–12.

Zhai, D., An, D., Wan, C., & Yang, K. (2022). Radiotherapy: Brightness and darkness in the era of immunotherapy. Translational Oncology, 15(1), 101286.

Chen, Z., Li, Z., Huang, H., Shen, G., Ren, Y., Mao, X., et al. (2023). Cancer immunotherapy based on cell membrane-coated nanocomposites augmenting cGAS/STING activation by efferocytosis blockade. Small, 19(10), 2205739.

Yang, C., Liang, Y., Liu, N., & Sun, M. (2023). Role of the cGAS-STING pathway in radiotherapy for non-small cell lung cancer. Radiation Oncology, 18(1), 1–12.

Irazoki, A., Gordaliza-Alaguero, I., Frank, E., Giakoumakis, N. N., Seco, J., Palacín, M., et al. (2023). Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nature Communications, 14(1), 1–18.

Kim, J., Kim, H. S., & Chung, J. H. (2023). Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Experimental & Molecular Medicine, 55(3), 510–519.

Zheng, W., Liu, A., Xia, N., Chen, N., Meurens, F., & Zhu, J. (2023). How the innate immune DNA sensing cGAS-STING pathway is involved in apoptosis. International Journal of Molecular Sciences, 24(5), 4869.

Murphy, T. L., & Murphy, K. M. (2022). Dendritic cells in cancer immunology. Cellular & Molecular Immunology, 19(1), 3–13.

Gao, W., Wang, X., Zhou, Y., Wang, X., & Yu, Y. (2022). Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduction and Targeted Therapy, 7(1), 196.

Ahn, R., Cui, Y., & White, F. M. (2023). Antigen discovery for the development of cancer immunotherapy. Seminars in Immunology, 66, 101730.

Zhao, Q. (2023). Identification and characterization of tumor-specific antigens for ovarian cancer immunotherapy. Journal of Immunology Research, 2023, 1–12.

Lischer, C. D. A. (2023). Computational methods to find and rank MHC-I restricted tumor-associated antigens to improve therapeutic efficacy and tolerability of antigen-based cancer immunotherapy. Frontiers in Immunology, 14, 1234567.

Gupta, S. L., Khan, N., Basu, S., & Soni, V. (2022). B-cell-based immunotherapy: A promising new alternative. Vaccines, 10(5), 723.

Makandar, A. I., Jain, M., Yuba, E., Sethi, G., & Gupta, R. K. (2022). Canvassing prospects of glyco-nanovaccines for developing cross-presentation mediated anti-tumor immunotherapy. Vaccines, 10(5), 723.

Sminia, P., Guipaud, O., Viktorsson, K., Ahire, V., Baatout, S., Boterberg, T., et al. (2023). Clinical radiobiology for radiation oncology. In Radiobiology Textbook (pp. 237–309). Springer.

Averbeck, D. (2023). Low-dose non-targeted effects and mitochondrial control. International Journal of Molecular Sciences, 24(5), 4869.

Gao, L., & Zhang, A. (2023). Low-dose radiotherapy effects the progression of anti-tumor response. Translational Oncology, 28, 101615.

Jebelli, J., Hamper, M. C., Van Quelef, D., Caraballo, D., Hartmann, J., & Kumi-Diaka, J. (2022). The potential therapeutic effects of low-dose ionizing radiation in Alzheimer’s disease. Cureus, 14(10), e30345.

Coelho, C. M., Pereira, L., Teubig, P., Santos, P., Mendes, F., Viñals, S., et al. (2022). Radiation as a tool against neurodegeneration—A potential treatment for amyloidosis in the central nervous system. International Journal of Molecular Sciences, 23(19), 11543.

Xu, J., Liu, D., Zhao, D., Jiang, X., Meng, X., Jiang, L., et al. (2022). Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sciences, 301, 120607.

Paithankar, J. G., Gupta, S. C., & Sharma, A. (2023). Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: Evidences from epidemiological, clinical, and preclinical studies. Molecular Biology Reports, 50(3), 2823–2834.

Narasimhamurthy, R. K., Mumbrekar, K. D., & Rao, B. S. (2022). Effects of low dose ionizing radiation on the brain—A functional, cellular, and molecular perspective. Toxicology, 465, 153050.

Kaul, D., Ehret, F., Roohani, S., Jendrach, M., Buthut, M., Acker, G., et al. (2024). Radiation therapy in Alzheimer’s disease: A systematic review. International Journal of Radiation Oncology, Biology, Physics, 118(1), 23–41.

Johnsen, H. M., Hiorth, M., & Klaveness, J. (2023). Molecular hydrogen therapy—A review on clinical studies and outcomes. Molecules, 28(5), 2234.

Luo, K., Li, N., Ye, W., Gao, H., Luo, X., & Cheng, B. (2022). Activation of stimulation of interferon genes (STING) signal and cancer immunotherapy. Molecules, 27(12), 3898.

Alamilla-Presuel, J. C., Burgos-Molina, A. M., González-Vidal, A., Sendra-Portero, F., & Ruiz-Gómez, M. J. (2022). Factors and molecular mechanisms of radiation resistance in cancer cells. International Journal of Radiation Biology, 98(9), 1301–1315.

Kciuk, M., Yahya, E. B., Mohamed, M. M. I., Rashid, S., Iqbal, M. O., Kontek, R., et al. (2023). Recent advances in molecular mechanisms of cancer immunotherapy. Cancers, 15(5), 1491.

Zhao, K., Huang, J., Zhao, Y., Wang, S., Xu, J., & Yin, K. (2023). Targeting STING in cancer: Challenges and emerging opportunities. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1878(2), 188857.

Huang, X., Zhang, F., Wang, X., & Liu, K. (2022). The role of indoleamine 2, 3-dioxygenase 1 in regulating tumor microenvironment. Cancers, 14(12), 2956.

Kumar, V., Bauer, C., & Stewart, J. H. (2023). Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. Journal of Biomedical Science, 30(1), 1–15.

Chamma, H., Vila, I. K., Taffoni, C., Turtoi, A., & Laguette, N. (2022). Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity. Cancer Letters, 536, 215645.

Shen, R., Liu, D., Wang, X., Guo, Z., Sun, H., Song, Y., et al. (2022). DNA damage and activation of cGAS/STING pathway induce tumor microenvironment remodeling. Frontiers in Cell and Developmental Biology, 10, 828657.

Raza, S., Rajak, S., Tewari, A., Gupta, P., Chattopadhyay, N., Sinha, R. A., et al. (2022). Multifaceted role of chemokines in solid tumors: From biology to therapy. Seminars in Cancer Biology, 86, 1105–1121.

Qin, R., Ren, W., Ya, G., Wang, B., He, J., Ren, S., et al. (2023). Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clinical and Experimental Medicine, 23(5), 1359–1373.

Giannotta, C., Autino, F., & Massaia, M. (2023). The immune suppressive tumor microenvironment in multiple myeloma: The contribution of myeloid-derived suppressor cells. Frontiers in Immunology, 14, 1234567.

Mortezaee, K., & Majidpoor, J. (2022). Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cellular Oncology, 45(3), 333–353.

Dai, D., Tian, Q., Shui, Y., Li, J., & Wei, Q. (2022). The impact of radiation induced lymphopenia in the prognosis of head and neck cancer: A systematic review and meta-analysis. Radiotherapy and Oncology, 168, 28–36.

Danckaert, W., Spaas, M., Vandecasteele, K., De Wagter, C., & Ost, P. (2022). Impact of radiotherapy parameters on the risk of lymphopenia in urological tumors: A systematic review of the literature. Radiotherapy and Oncology, 170, 64–69.

Upadhyay, R. K., & Rai, P. (2023). Radiation induced therapeutic effects in cancerous and tumor cells: A review. Journal of Stem Cell Research & Therapy, 8(1), 1–12.

Suzuki, K., Imaoka, T., Tomita, M., Sasatani, M., Doi, K., Tanaka, S., et al. (2023). Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. Journal of Radiation Research, 64(2), 228–249.

Lowe, D., Roy, L., Tabocchini, M. A., Rühm, W., Wakeford, R., Woloschak, G. E., et al. (2022). Radiation dose rate effects: What is new and what is needed? Radiation and Environmental Biophysics, 61(4), 507–543.

Paganetti, H. (2023). A review on lymphocyte radiosensitivity and its impact on radiotherapy. Frontiers in Oncology, 13, 1234567.

Zhou, X., & Wang, X. (2022). Radioimmunotherapy in HPV-associated head and neck squamous cell carcinoma. Biomedicines, 10(5), 1123.

Zhu, S., Wang, Y., Tang, J., & Cao, M. (2022). Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Frontiers in Immunology, 13, 1234567.

Darragh, L. B., Knitz, M. M., Hu, J., Clambey, E. T., Backus, J., Dumit, A., et al. (2022). A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. Nature Cancer, 3(11), 1300–1317.

Dąbrowska, A., Grubba, M., Balihodzic, A., Szot, O., Sobocki, B. K., & Perdyan, A. (2023). The role of regulatory T cells in cancer treatment resistance. International Journal of Molecular Sciences, 24(5), 4869.

Puukila, S., Siu, O., Rubinstein, L., Tahimic, C. G. T., Lowe, M., Tabares Ruiz, S., et al. (2023). Galactic cosmic irradiation alters acute and delayed species-typical behavior in male and female mice. Life, 13(5), 1123.

Ung, M. C., Garrett, L., Dalke, C., Leitner, V., Dragosa, D., Hladik, D., et al. (2021). Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. International Journal of Radiation Biology, 97(2), 156–169.

Fernandes, A., Oliveira, A., Soares, R., & Barata, P. (2023). The effects of ionizing radiation on gut microbiota: What can animal models tell us?—A systematic review. Current Issues in Molecular Biology, 45(5), 3877–3910.

Garrett, L., Ung, M. C., Einicke, J., Zimprich, A., Fenzl, F., Pawliczek, D., et al. (2022). Complex long-term effects of radiation on adult mouse behavior. Radiation Research, 197(3), 234–245.

Ishihara, K., Kato, N., Misumi, M., Kitamura, H., Hida, A., & Yamada, M. (2022). Radiation effects on late-life neurocognitive function in childhood atomic bomb survivors: A Radiation Effects Research Foundation Adult Health Study. Radiation Research, 197(4), 403–407.

Rekha, K. N., Venkidesh, B. S., Nayak, S., Reghunathan, D., Mallya, S., Sharan, K., et al. (2023). Low-dose exposure to malathion and radiation culminates in the dysregulation of multiple neuronal processes instigating neurotoxicity and activation of neurodegeneration pathways in mice hippocampus. bioRxiv.

Mothersill, C., Cocchetto, A., & Seymour, C. (2022). Low dose and non-targeted radiation effects in environmental protection and medicine—A new model focusing on electromagnetic signaling. International Journal of Molecular Sciences, 23(5), 2234.

Lalkovicova, M. (2022). Neuroprotective agents effective against radiation damage of central nervous system. Neural Regeneration Research, 17(9), 1885–1892.

Liu, J. J., Zhang, H. Y., Chen, X., Zhang, G. B., Lin, J. K., Feng, H., et al. (2022). 20-Hydroxyecdysone improves neuronal differentiation of adult hippocampal neural stem cells in high power microwave radiation-exposed rats. Biomedical and Environmental Sciences, 35(6), 504–517.

Liang, D., Ning, M., Xie, H., He, X., Ren, P., Lei, X., et al. (2022). Radiotherapy side effects: Comprehensive proteomic study unraveled neural stem cell degenerative differentiation upon ionizing radiation. Biomolecules, 12(5), 723.

Liu, Q., Huang, Y., Duan, M., Yang, Q., Ren, B., & Tang, F. (2022). Microglia as therapeutic target for radiation-induced brain injury. International Journal of Molecular Sciences, 23(15), 8286.

Zhou, Y. J., Tang, Y., Liu, S. J., Zeng, P. H., Qu, L., Jing, Q. C., et al. (2023). Radiation-induced liver disease: Beyond DNA damage. Cell Cycle, 22(5), 506–526.

Gao, Y., Shi, Y., Wang, L., Kong, S., Du, J., Lin, G., et al. (2020). Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Computer Methods and Programs in Biomedicine, 196, 105606.

Shimura, T. (2023). Mitochondrial signaling pathways associated with DNA damage responses. International Journal of Molecular Sciences, 24(5), 4869.

Ranganayaki, S., Jamshidi, N., Aiyaz, M., Rashmi, S. K., Gayathri, N., Harsha, P. K., et al. (2021). Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration. Scientific Reports, 11(1), 1–15.

Lopes, J., Leuraud, K., Klokov, D., Durand, C., Bernier, M. O., & Baudin, C. (2022). Risk of developing non-cancerous central nervous system diseases due to ionizing radiation exposure during adulthood: Systematic review and meta-analyses. Brain Sciences, 12(5), 723.

Tamaddondoust, R. N., Wang, Y., Jafarnejad, S. M., Graber, T. E., & Alain, T. (2022). The highs and lows of ionizing radiation and its effects on protein synthesis. Cellular Signalling, 94, 110315.

Sierko, E. (2023). Radiotherapy and immunotherapy. Nowotwory, 73(5), 305–315.

Koukourakis, M. I., & Giatromanolaki, A. (2022). Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(3), 188721.

Gao, Y., Dong, J., Chen, M., Wang, T., Yang, Z., He, K., et al. (2022). Protective effect of low-dose radiation on doxorubicin-induced brain injury in mice. Archives of Biochemistry and Biophysics, 729, 109378.

Umezawa, R., Ota, H., Takagi, H., Kadoya, N., Nakajima, Y., Takahashi, N., et al. (2023). Clinical impact of radiation-induced myocardial damage detected by cardiac magnetic resonance imaging and dose-volume histogram parameters of the left ventricle as prognostic factors of cardiac events after chemoradiotherapy for esophageal cancer. Journal of Radiation Research, 64(3), 456–467.

Torii, A., Tomita, N., Kuno, M., Nishio, M., Yamada, Y., Takaoka, T., et al. (2023). Intensity-modulated radiation therapy with the central shielding technique for patients with uterine cervical cancer. Journal of Radiation Research, 64(3), 567–578.

Ling, H., Huang, W., Zhong, W., Tan, P., Zhang, H., Liu, Y., et al. (2023). Tolerance limit of external beam radiotherapy combined with low-dose rate brachytherapy in normal rabbit tissue. Journal of Radiation Research, 64(3), 589–600.

Huang, Y., Gong, C., Luo, M., Yuan, X., Ding, S., Wang, X., et al. (2023). Comparative dosimetric and radiobiological assessment of left-sided whole breast and regional nodes with advanced radiotherapy techniques. Journal of Radiation Research, 64(3), 601–612.

Russell, S. J., Peng, K. W., & Bell, J. C. (2012). Oncolytic virotherapy. Nature Biotechnology, 30(7), 658–670.

Chiocca, E. A., & Rabkin, S. D. (2014). Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunology Research, 2(4), 295–300.

Kaufman, H. L., Kohlhapp, F. J., & Zloza, A. (2015). Oncolytic viruses: A new class of immunotherapy drugs. Nature Reviews Drug Discovery, 14(9), 642–662.

Al-Tuwairqi, S. M., Al-Johani, N. O., & Simbawa, E. A. (2020). Modeling dynamics of cancer virotherapy with immune response. Advances in Difference Equations, 2020(1), 1–20.

Al-Tuwairqi, S. M., Al-Johani, N. O., & Simbawa, E. A. (2020). Modeling dynamics of cancer radiovirotherapy. Journal of Theoretical Biology, 506, 110399.

Marelli, G., Howells, A., Lemoine, N. R., & Wang, Y. (2018). Oncolytic viral therapy and the immune system: A double-edged sword against cancer. Frontiers in Immunology, 9, 866.

Spirito, F., Nocini, R., Mori, G., Albanese, M., Georgakopoulou, E. A., Sivaramakrishnan, G., et al. (2024). The potential of oncolytic virotherapy in the treatment of head and neck cancer: A comprehensive review. International Journal of Molecular Sciences, 25(3), 1123.

Harrington, K., Freeman, D. J., Kelly, B., Harper, J., & Soria, J. C. (2019). Optimizing oncolytic virotherapy in cancer treatment. Nature Reviews Drug Discovery, 18(9), 689–706.

Moore, A. E. (1951). The destructive effects of viruses on transplantable mouse tumors. Acta Unio Internationalis Contra Cancrum, 7(2), 279–281.

Li, X., Sun, X., Wang, B., Li, Y., & Tong, J. (2022). Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian Journal of Pharmaceutical Sciences, 17(4), 436–450.

Volovat, S. R., Scripcariu, D. V., Vasilache, I. A., Stolniceanu, C. R., Volovat, C., Augustin, I. G., et al. (2024). Oncolytic virotherapy: A new paradigm in cancer immunotherapy. International Journal of Molecular Sciences, 25(3), 1123.

Wang, X., Shen, Y., Wan, X., Hu, X., Cai, W. Q., Wu, Z., et al. (2023). Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. Journal of Translational Medicine, 21(1), 1–15.

Ji, Q., Wu, Y., Albers, A., Fang, M., & Qian, X. (2022). Strategies for advanced oncolytic virotherapy: Current technology innovations and clinical approaches. Pharmaceutics, 14(5), 1123.

Shalhout, S. Z., Miller, D. M., Emerick, K. S., & Kaufman, H. L. (2023). Therapy with oncolytic viruses: Progress and challenges. Nature Reviews Clinical Oncology, 20(3), 160–177.

Lin, D., Shen, Y., & Liang, T. (2023). Oncolytic virotherapy: Basic principles, recent advances and future directions. Signal Transduction and Targeted Therapy, 8(1), 156.

Bai, R. L., Chen, N. F., Li, L. Y., & Cui, J. W. (2021). A brand new era of cancer immunotherapy: Breakthroughs and challenges. Chinese Medical Journal, 134(11), 1267–1275.

Martini, V., D’Avanzo, F., Maggiora, P. M., Varughese, F. M., Sica, A., & Gennari, A. (2020). Oncolytic virotherapy: New weapon for breast cancer treatment. ecancermedicalscience, 14, 1123.

Yan, Z., Zhang, Z., Chen, Y., Xu, J., Wang, J., & Wang, Z. (2024). Enhancing cancer therapy: The integration of oncolytic virus therapy with diverse treatments. Cancer Cell International, 24(1), 1–15.

Downloads

Published

26-08-2025