Effect of Different pHs and Temperatures on Stability and Mode of Action of Ethanolic Kayu Manis Hutan (Cinnamomum iners) Extract Against Foodborne Pathogens
DOI:
https://doi.org/10.11113/mjfas.v21n2.3377Keywords:
Antibacterial activity, Cinnamomum iners, foodborne pathogens, extract stability, SEM.Abstract
Pathogenic bacteria found in raw foods have the potential to contaminate processed goods and cause them to deteriorate. Processed foods are divided into groups based on the necessary degree of heat treatment and pH levels in order to provide quality and safety. This study aims to evaluated the effect of different pHs and temperatures on the stability and mode of action of ethanolic Cinnamomum iners leaves extract against foodborne pathogens. Two different stages of leaf maturity were selected, namely young and old. The susceptibility activities of extracts after treated with different pHs (5, 7 and 9) and temperature (30oC, 50oC and 80oC) against foodborne pathogens ranged between 8.33 ± 0.76 to 11.33 ± 0.58 mm and 8.67 ± 0.58 to 12.67 ± 0.58 mm, respectively. Young leaves showed better susceptibility toward foodborne pathogens than old leaves against P. mirabilis (10.33 ± 0.58 and 11.33 ± 0.58 mm) at pH 5 and pH 9, while E. coli (10.33 ± 0.58 mm) at pH 7. In terms of temperature for foodborne pathogens, B. cereus showed the highest inhibition zone (12.67 ± 0.58 and 10.00 ± 0.00 mm) at 30oC and 50oC, while B. megaterium (11.00 ± 1.00 mm) at 80oC. The MIC and MBC from both extracts tested showed at the ranged between 0.31 to 5.00 after being treated at different pHs and temperatures. The SEM analysis showed morphological features in selected treated microorganisms namely, B. cereus and K. pneumoniae changed in the cell wall shape, ruptured, and the cytoplasm leaked. Meanwhile, untreated cells assume normal rod with a smooth surface. In conclusion, C. iners leaf extract exhibited antibacterial activity particularly young leaf, which showed stability after being subjected to different pHs and temperatures and can be developed as natural food preservatives.
References
Anzano, A., de Falco, B., Grauso, L., Motti, R., & Lanzotti, V. (2022). Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry, and pharmacology. Phytochemistry Reviews, 21, 565–615.
Ariyamuthu, R., Albert, V. R., & Je, S. (2022). An overview of food preservation using conventional and modern methods. Journal of Food and Nutrition Sciences, 10(3), 70–79.
Artés-Hernández, F., Castillejo, N., & Martínez-Zamora, L. (2022). UV and visible spectrum LED lighting as abiotic elicitors of bioactive compounds in sprouts, microgreens, and baby leaves—A comprehensive review including their mode of action. Foods, 11(3), 265–277.
Barton, K. E., Edwards, K. F., & Koricheva, J. (2019). Shifts in woody plant defence syndromes during leaf development. Functional Ecology, 33(11), 2095–2104.
Behbahani, B. A., Noshad, M., & Falah, F. (2019). Cumin essential oil: Phytochemical analysis, antimicrobial activity, and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 103716.
Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99(4), 1457–1474.
Cao, H., Saroglu, O., Karadag, A., Diaconeasa, Z., Zoccatelli, G., Conte‐Junior, C. A., Gonzalez-Aguilar, G. A., O, J., Bai, W., Zamarioli, C. M., Freitas, L. A., Shpigelman, A., Campelo, P. H., Capanoglu, E., Hii, C. L., Jafari, S. M., Qi, Y., Liao, P., Wang, M., Zou, L., Borke, P., Simal-Gandara, J., & Xiao, J. (2021). Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2(2), 109–139.
Chandrasekaran, S., Abbott, A., Campeau, S., Zimmer, B. L., Weinstein, M., Thrupp, L., Hejna, J., Walker, L., Ammann, T., Kirn, T., Patel, R., & Humphries, R. M. (2018). Direct-from-blood-culture disk diffusion to determine antimicrobial susceptibility of Gram-negative bacteria: Preliminary report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. Journal of Clinical Microbiology, 56(3), 1110–1128.
dos Santos Franciscato, L. M. S., Ariati, A. M., Picolloto, A. M., Raia, R. Z., Barbosa, V. A., Bittencourt, P. R. S., dos Reis Souza, M. R., Sakai, O. A., Angelo, E. A., & Moritz, C. M. F. (2022). Thermal properties of cinnamon (Cinnamomum verum) essential oil and its antibacterial activity. Research, Society and Development, 11(13), 1–13.
Ezzatpanah, H., Gómez‐López, V. M., Koutchma, T., Lavafpour, F., Moerman, F., Mohammadi, M., & Raheem, D. (2022). Risks and new challenges in the food chain: Viral contamination and decontamination from a global perspective, guidelines, and cleaning. Comprehensive Reviews in Food Science and Food Safety, 21(2), 868–903.
Falsafi, S. R., Rostamabadi, H., Assadpour, E., & Jafari, S. M. (2020). Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science, 280, 102166.
Gong, X., Huang, J., Xu, Y., Li, Z., Li, L., Li, D., Belwal, T., Jaendet, P., & Xu, Y. (2023). Deterioration of plant volatile organic compounds in food: Consequence, mechanism, detection, and control. Trends in Food Science & Technology, 131, 61–76.
Granato, D., Barba, F. J., Bursać Kovačević, D., Lorenzo, J. M., Cruz, A. G., & Putnik, P. (2020). Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology, 11, 93–118.
Hoque, M. M., Inatsu, M., Juneja, V., & Kawamoto, S. (2008). Antimicrobial activity of cloves and cinnamon extracts against food borne pathogens and spoilage bacteria and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Reports of the National Food Research Institute, 72, 9–21.
Hosseini, H., & Jafari, S. M. (2020). Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science, 282, 102210.
Islam, F., Saeed, F., Afzaal, M., Ahmad, A., Hussain, M., Khalid, M. A., Saewa, S. A., & Khashroum, A. O. (2022). Applications of green technologies‐based approaches for food safety enhancement: A comprehensive review. Food Science and Nutrition, 10(9), 2855–2867.
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7–11.
Kalscheuer, R., Palacios, A., Anso, I., Cifuente, J., Anguita, J., Jacobs Jr, W. R., Guerin, M. E., & Prados-Rosales, R. (2019). The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochemical Journal, 476(14), 1995–2016.
Kim, M. J., Moon, Y., Tou, J. C., Mou, B., & Waterland, N. L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49, 19–34.
Kim, W. J., Lee, K. A., Kim, K. T., Chung, M. S., Cho, S. W., & Paik, H. D. (2011). Antimicrobial effects of onion (Allium cepa L.) peel extracts produced via subcritical water extraction against Bacillus cereus strains as compared with ethanolic and hot water extraction. Food Science and Biotechnology, 20, 1101–1106.
Li, Y., Kong, D., Fu, Y., Sussman, M. R., & Wu, H. (2020). The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry, 148, 80–89.
Liu, X., Le Bourvellec, C., Guyot, S., & Renard, C. M. (2021). Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4841–4880.
Lobiuc, A., Pavăl, N. E., Mangalagiu, I. I., Gheorghiță, R., Teliban, G. C., Amăriucăi-Mantu, D., & Stoleru, V. (2023). Future antimicrobials: Natural and functionalized phenolics. Molecules, 28(3), 1114–1125.
Manogaran, Y., Jagadeesan, D., Narain, K., Kumari, U., Anand, P., & Shanmugavelu, S. (2023). Antibacterial response of Cinnamomum iners leaves extract and cinnamic acid derivative against pathogens that triggers periimplantitis. Research Journal of Pharmacy and Technology, 16(3), 1471–1480.
Mirza, S. K., Asema, U. K., & Kasim, S. S. (2017). To study the harmful effects of food preservatives on human health. Journal of Medicinal Chemistry Drug Discovery, 2, 610–616.
Mousa, K. A., Padzil, K. N. M., Rukayadi, Y., Putra Shamsudin, N. I., & Abas, F. (2023). Effect of different pHs and temperatures on stability and mode of action of Musa paradisiaca L. flower extract against foodborne pathogens and food spoilage microorganisms. Journal of Pure and Applied Microbiology, 17(3), 1495–1508.
Muhammad, D. R. A., Juvinal, J. G., & Dewettinck, K. (2020). The radical scavenging activity and thermal stability of cinnamon extract-loaded nanoparticles. Caraka Tani: Journal of Sustainable Agriculture, 35(1), 147–156.
Mustaffa, F., Indurkar, J., Ismail, S., Shah, M., & Mansor, S. M. (2011). An antimicrobial compound isolated from Cinnamomum iners leaves with activity against methicillin-resistant Staphylococcus aureus. Molecules, 16(4), 3037–3047.
Mustaffa, I. N., Ramle, S. F. M., Adenam, N. M., Awalludin, M. F., Zaudin, N. A. C., Hamid, Z. A. A., & Hermawan, A. (2020). Potential of Cinnamomum iners wood as antimicrobial agent. International Conference on Science and Technology, 596, 1–10.
Nowak, K., Jabłońska, E., & Ratajczak-Wrona, W. (2021). Controversy around parabens: Alternative strategies for preservative use in cosmetics and personal care products. Environmental Research, 198, 110488.
Okpala, C. O. R., & Ezeonu, I. M. (2019). Food hygiene/microbiological safety in the typical household kitchen: Some basic 'must know' for the general public. Journal of Pure and Applied Microbiology, 13(2), 697–713.
Pagliari, S., Forcella, M., Lonati, E., Sacco, G., Romaniello, F., Rovellini, P., Fusi, P., Palestini, P., Campone, L., Labra, M., Bulbarelli, A., & Bruni, I. (2023). Antioxidant and anti-inflammatory effect of cinnamon (Cinnamomum verum J. Presl) bark extract after in vitro digestion simulation. Foods, 12(3), 452–470.
Pariza, M. W., Gillies, K. O., Kraak-Ripple, S. F., Leyer, G., & Smith, A. B. (2015). Determining the safety of microbial cultures for consumption by humans and animals. Regulatory Toxicology and Pharmacology, 73(1), 164–171.
Rahmati, M., Silva, E. A., Reseland, J. E., Heyward, C. A., & Haugen, H. J. (2020). Biological responses to physicochemical properties of biomaterial surface. Chemical Society Reviews, 49(15), 5178–5224.
Rawat, M., Varshney, A., Rai, M., Chikara, A., Pohty, A. L., Joshi, A., Binjola, A., Singh, C. P., Rawat, K., Rather, M. A., & Gupta, A. K. (2023). A comprehensive review on nutraceutical potential of underutilized cereals and cereal-based products. Journal of Agriculture and Food Research, 100619.
Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. D. A. G., de Melo, N. R., & Sanches-Silva, A. (2017). Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends in Food Science & Technology, 62, 154–169.
Sahu, M., & Bala, S. (2017). Food processing, food spoilage and their prevention: An overview. International Journal of Life Sciences Research, 3(1), 753–759.
Shu, Q., Niu, Y., Zhao, W., & Chen, Q. (2019). Antibacterial activity and mannosylerythritol lipids against vegetative cells and spores of Bacillus cereus. Food Control, 106, 106711.
Udayaprakash, N. K., Ranjithkumar, M., Deepa, S., Sripriya, N., Al-Arfaj, A. A., & Bhuvaneswari, S. (2015). Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. Ex. Blume. Industrial Crops and Products, 69, 175–179.
Vigila, A. G., Sahayaraj, K., & Baskaran, X. (2018). In vitro antimicrobial activities of Cinnamomum iners leaf and bark extracts against pathogens of food borne diseases. Approaches in Poultry Dairy and Veterinary Sciences, 3, 1–5.
Wahab, I. R. A., & Hussain, M. H. (2021). Brine shrimp lethality test of various Cinnamomum iners (Lauraceae) barks extracts. Journal of Tropical Resources and Sustainable Science, 6, 109–113.
Wong, J. X., Ramli, S., Rukayadi, Y., Juhari, N. K. K., Radu, S., & Abd Wahid, N. B. (2022). Antifungal activity of ethanolic extract of Syzygium polyanthum (Wight) Walp. leaves extract against several types of filamentous fungi and Candida species. Malaysian Journal of Microscopy, 18(1), 1–15.
Yap, P. S. X., Krishnan, T., Chan, K. G., & Lim, S. H. E. (2015). Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. Journal of Microbiology and Biotechnology, 25(8), 1299–1306.
Yusoff, S. F., Haron, F. F., Tengku Muda Mohamed, M., Asib, N., Sakimin, S. Z., Abu Kassim, F., & Ismail, S. I. (2020). Antifungal activity and phytochemical screening of Vernonia amygdalina extract against Botrytis cinerea causing gray mold disease on tomato fruits. Biology, 9(9), 286–299.
Zhang, Q. W., Lin, L. G., & Ye, W. C. (2018). Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine, 13, 1–26.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Khairul Naim Md Padzil, Yaya Rukayadi, Faridah Abas, Maimunah Sanny, Noor Azira Abdul Mutalib

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.