Determination of Lewis and Brönsted acid sites by gas flow-injection technique

Authors

  • Malik Musthofa
  • Ainul Hakimah Karim
  • Nurrulhidayah Ahmad Fadzlillaah
  • Nur Hazirah Rozali Annuar
  • Aishah Abdul Jalil
  • Sugeng Triwahyono

DOI:

https://doi.org/10.11113/mjfas.v6n2.195

Keywords:

Gas flow technique, Pyridine, Lewis acid sites, Brönsted acid sites, HZSM-5, Pt/SO4 2--ZrO2, Al2O3,

Abstract

Gas flow-injection technique pyridine-FTIR was studied for determination of Lewis and Brönsted acid sites on the solid super acid catalysts. The system consists of stainless steel gas cell which can be heated up to 623 K, CaF2 windows, pyridine injection port and double liquid nitrogen trap for removal of moisture. Pure nitrogen gas and pyridine were used as a carrier and probe molecule. Pyridine was injected to the sysem at 423 K followed by flushing of N2 gas through double liquid nitrogen trap at 423 for 1 h and at 573 K for 30 min. All spectra were recorded at room temperature. This technique gave similar results to those of taken by vacuum system for HZSM-5, Pt/SO4 2--ZrO2, Al2O3 catalysts.

References

G. Busca, Chemical Reviews, 2007, Vol. 107, No 11.

G.V.A. Martins, G. Berlier, C. Bisio, S. Coluccia, H.O. Pastore, and L. Marchese, Jornal of Physical Chemistry C, 2008, 112, 7193-7200.

N. Keller, G. Koehl, F. Garin, and V. Keller, Chemical Communication, 2005, 201-203.

A. Platon and W.J. Thomson, Industrial and Engineering Chemistry Research, 2003, 42, 5988-5992.

S. Triwahyono, T. Yamada, H. Hattori, Applied Catalysis A: General 242 (2003) 101-109.

S. Triwahyono, T. Yamada, H. Hattori, Applied Catalysis A: General 250 (2003) 75-81.

J. Ryczkowski, Catalysis Today, 68 (2001) 263-381.

R.W. Stevens Jr, S.S.C. Chuang, and B.H. Davis, Applied Catalysis A: General 252 (2003) 54-74.

R. Olindo, A. Goeppert, D. Habermacher, J Sommer, and F. Pinna, Journal of Catalysis, 197, 344-349 (2001).

Y. Tao, H. Kanoh, and K. Kaneko, Journal of American Chemical Society, 2003, 125, 6044-6055.

S. Triwahyono, Aishah A.J., Halimaton, H., Journal-The Institution of Engineers, Malaysia (vol.67, No 1, 2006).

P. Wang, S. Yang, J.N. Kondo, K. Domen, T. Yamada, and H. Hattori, Journal of Physical Chemistry B, 2003, 107, 11951-11959.

T.R. Hughes, H.M. White, Journal of Physical. Chemistry, 71 (1967) 2192.

I. Takahara, M. Saito, M. Inaba, and K. Murata, Catalysis Letters, Vol. 105, Nos. 3-4, 2005.

K. Ebitani, J. Tsuji, H. Hattori, and H. Kita, journal of Catalysis, 138, 750-753 (1992).

H. Matsuura, N. Katada, and M. Niwa, Microporous and Mesoporous Materials, 66 (2003) 283-296.

A. Zhang, I. Nakamura, and K. Fujimoto, Journal of Catalysis 168, 328-333 (1997).

K. Ebitani, J. Tsuji, H. Hattori, and H. Kita, journal of Catalysis, 135, 609-617 (1992).

S. Triwahyono, T. Yamada, and H. Hattori, Catalysis Letter, Vol. 85, Nos. 1-2, 2003.

Z. Sarbak, Applied Catalysis A: general 159 (1997) 147-157.

G. Crpeau, V. Montouillout, A. Vimont, L. Mariey, T. Cseri, and F. Maug, Journal of Physical Chemistry B, 2006, 110 (31), 15172-15185.

Downloads

Published

22-07-2014