Full-energy peak efficiency and response function of 1 cm3 CdZnTe detectors

Authors

  • Suffian Mohamad Tajudin Universiti Sultan Zainal Abidin http://orcid.org/0000-0002-7698-2659
  • Yoshihito Namito High Energy Accelerator Research Organization (KEK)
  • Toshiya Sanami High Energy Accelerator Research Organization (KEK)
  • Hideo Hirayama High Energy Accelerator Research Organization (KEK)

DOI:

https://doi.org/10.11113/mjfas.v15n4.1254

Keywords:

CdZnTe, gamma ray, full-energy peak efficiency

Abstract

The energy dependence of the full-energy peak (FEP) efficiency and response function of 1 cm3 CdZnTe detectors that use gamma rays were investigated in the present study. Specifically, full-energy peaks from 60 keV to 1.3 MeV were evaluated. 214Am, 133Ba, 137Cs, 54Mn, and 60Co radionuclides with good source activities were employed. The results showed that the absolute peak efficiencies decreased at higher energies, and the calculated (EGS5 code) efficiencies were nearly 70% greater than the experimental values when above 100 keV photon. Below 100 keV, disagreement is within 35%. The measured and calculated peak efficiencies peak agreed within 5% in a wide energy range when the “effective” of the crystal area was down to 0.8 x 0.8 cm2. Agreement corresponding to response function curve at the region of interest (full-energy peak) and Compton plateau region for 137Cs achieved once considering the 0.8 x 0.8 cm2 effective area of the crystal and the source plastic casing. The results of the present study provided important insights on the calibration of the FEP efficiency as a function of the gamma ray energy. The detectors must be individually calibrated to obtain reliable results.

References

Knoll, G. F. (2010). Radiation detection and measurement. 4th Edition. John Wiley & Sons, pp 229-232.

Chun, S. -D., Park, S. -H., Lee, D. H., Kim, Y. K., Ha, J. H., Kang, A. M., Kim, J. K. (2008). Property of CZT semiconductor detector for radionuclide identification. Journal of Nuclear Science and Technology, 45(5), 421-424.

Tajudin, S. M., Namito, Y., Sanami, T., Hirayama, H. (2014). Study of plastic scintillator properties for radioactive sources dosimetry. 18th Topical Meeting of the Radiation Protection and Shielding Division of ANS, RPSD, 113432, 244-247.

Tajudin, S. M., Namito, Y., Sanami, T., Hirayama, H. (2014). Quasi-monoenergetic 200 keV photon field using a radioactive source with backscatter layout. Japanese Journal of Applied, 53(11), 116401.

Tajudin S. M., Namito, Y., Sanami, T., Hirayam, H. (2014). Experimental study of quasi-monoenergetic 200 keV photon field using a radioactive source with backscatter layout. IEEE Nuclear Science Symposium Conference Record, Article number 6829658.

Eisen, Y., Shor, A., and Mardor, I. (1999). CdZn and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nuclear Instruments and Methods in Physics Research A, 428,158-170.

Kim, K., -O., Kim, J. -K., Ha, J. -H., Kim, S. -Y. (2009). Analysis of charge collection efficiency for a planar CdZnTe detector. Nuclear Engineering and Technology, 41(5), 723-728.

Bolotnikov, A. E., Camarda, G. S., Cui, Y., de Geronimo, G. Fried, J., Gul, R., Hossain, A., Kim, K., Yang, G., Vernon, E., James, R. B. (2012). Rejecting incomplete charge-collection events in CdZnTe and other semiconductor detectors. Nuclear Instruments and Methods in Physics Research A, 664, 317–323.

Perez, J. M., He, Z., Wehe, D. K., Du Y. F. (2002). Estimate of large CZT detector absolute efficiency. IEEE Transactions on Nuclear Science, 49(4), 2010-2018.

Hirayama, H., Namito, Y., Bielajew, A. F., Wilderman, S. J., Nelson, W. R. (2010). EGS5 code system, SLAC Report SLAC-R-730 and KEK Report 2005.

KROMEK, Model GR1 (2014). Retrieved from http://www.nikiglass.jp/KromeK_REF/KromeK_REF.html

JRIA (2011). Radioisotope pocket data book. 11th edition. Japan Radioisotope Association (JRIA), Maruzen, Tokyo.

Tajudin, S. M. (2015). The development of detector and calibration field as an approach of low energy photon dosimetry (Unpublished doctoral dissertation), The Graduate University for Advanced Studies, Japan. Retrieved from: http://id.nii.ac.jp/1013/00004980/ or https://ir.soken.ac.jp/

Cgview 3.0.7 (2018). Retrieved from http://rcwww.kek.jp/research/egs/ kek/cgview/

Tajudin, S. M., Tabbakh, F. (2019). Biological polymeric shielding design for an X-ray laboratory using Monte Carlo codes. Radiological Physics and Technology. Retrieved from: https://doi.org/10.1007/s12194-019-00522-w

Downloads

Published

25-08-2019