Influence of viscous dissipation on the flow and heat transfer of a Jeffrey fluid towards horizontal circular cylinder with free convection: A numerical study

Authors

  • Syazwani Mohd Zokri
  • Nur Syamilah Arifin
  • Muhammad Khairul Anuar Mohamed
  • Abdul Rahman Mohd Kasim
  • Nurul Farahain Mohammad
  • Mohd Zuki Salleh Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v14n1.721

Keywords:

Non-Newtonian Jeffrey fluid, free convection, viscous dissipation effect, horizontal circular cylinder

Abstract

This paper focuses on the numerical solution of free convection boundary layer flow past a horizontal circular cylinder in non-Newtonian Jeffrey fluid. The impact of viscous dissipation is discussed. The non-dimensional variables and non-similar transformations are implemented to transform the dimensional partial differential equations into two nonlinear partial differential equations (PDEs). Then, the implicit, unconditionally stable and well-tested Keller-box method is used to solve the PDEs by adding an extra boundary condition at infinity. The impacts of emerging parameters such as ratio of relaxation to retardation times, Deborah number, Prandtl number and Eckert number towards the quantities of physical interest are deliberated through graphical representation. The critical point for Prandtl number and ratio of relaxation to retardation times are investigated to achieve the physically acceptable solutions. It appears from this study that a rise in ratio of relaxation to retardation times tends to boost the velocity profile while declining the temperature profile. The opposite trend of graph is observed for the Deborah number where an increase in Deborah number give rise to decrement in velocity profile but increment in temperature profile. For increasing value of the Eckert number, the skin friction coefficient is found to increase while the Nusselt number is decreased. This study also reveals that the non-Newtonian Jeffrey fluid pronounced an effective heat transfer rate in comparison to Newtonian fluid.

References

Al-Sharifi, H., Kasim, A., Aziz, L., Salleh, M., and Shafie, S. (2017). Influence of aligned magnetohydrodynamic of Jeffrey fluid across a stretching sheet. Indian Journal of Science and Technology, 10(7), 1-5.

Azim, N. (2014). Effects of viscous dissipation and heat generation on MHD conjugate free convection flow from an isothermal horizontal circular cylinder. SOP Transactions on Applied Physics, 1(3), 1-11.

Bird, R. B., Armstrong, R. C., Hassager, O., and Curtiss, C. F. (1977). Dynamics of Polymeric Liquids (Vol. 1). New York: Wiley.

Blasius, H. (1907). Grenzschichten in Flüssigkeiten mit kleiner Reibung. Leipzig, Saxony, Germany: Druck von BG Teubner.

Cebeci, T., and Bradshaw, P. (1988). Physical and Computational Aspects of Convective Heat Transfer. New York: Springer.

Das, K., Acharya, N., and Kundu, P. K. (2015). Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. Alexandria Engineering Journal, 54(4), 815-821.

Frossling, N. (1958). Calculation by series expansion of the heat transfer in laminar, constant-property boundary layers at nonisothermal surfaces. Arkiv Fysik, 14, 143.

Gebhart, B. (1962). Effects of viscous dissipation in natural convection. Journal of Fluid Mechanics, 14(02), 225-232.

Hayat, T., Awais, M., Asghar, S., and Hendi, A. A. (2011). Analytic solution for the magnetohydrodynamic rotating flow of Jeffrey fluid in a channel. Journal of Fluids Engineering, 133(6), 061201-061207.

Kakac, S., Yener, Y., and Pramuanjaroenkij, A. (2013). Convective Heat Transfer. Boca Raton, Forida, United States: CRC Press.

Kasim, A. R. M., Mohammad, N. F., Shafie, S., and Pop, I. (2013). Constant heat flux solution for mixed convection boundary layer Viscoelastic fluid. Heat and Mass Transfer, 49(2), 163-171.

Merkin, J., and Pop, I. (1988). A note on the free convection boundary layer on a horizontal circular cylinder with constant heat flux. Wärme-und Stoffübertragung, 22(1-2), 79-81.

Merkin, J. H. (1976). Free convection boundary layer on an isothermal horizontal cylinder. American Society of Mechanical Engineers and American Institute of Chemical Engineers, Heat Transfer Conference. 9-11 August 1976. St. Louis, USA, 1-4.

Middleman, S. (1977). Fundamentals of Polymer Processing. New York: McGraw-Hill.

Mohamed, M. K. A., Noar, N. A. Z. M., Salleh, M. Z., and Ishak, A. (2016a). Free convection boundary layer flow on a horizontal circular cylinder in a nanofluid with viscous dissipation. Sains Malaysiana, 45(2), 289-296.

Mohamed, M. K. A., Sarif, N. M., Kasim, A. R. M., Noar, N. A. Z. M., Salleh, M. Z., and Ishak, A. (2016b). Effects of viscous dissipation on free convection boundary layer flow towards a horizontal circular cylinder. ARPN Journal of Engineering and Applied Sciences, 11(11), 7258-7263.

Molla, M. M., Hossain, M. A., and Paul, M. C. (2006). Natural convection flow from an isothermal horizontal circular cylinder in presence of heat generation. International Journal of Engineering Science, 44(13–14), 949-958.

Molla, M. M., Paul, S. C., and Hossain, M. A. (2009). Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation. Applied Mathematical Modelling, 33(7), 3226-3236.

Na, T. Y. (1980). Computational Methods in Engineering Boundary Value Problems (Vol. 145). New York: Academic Press.

Nazar, R., Amin, N., and Pop, I. (2002). Free convection boundary layer on an isothermal horizontal circular cylinder in a micropolar fluid. Heat Transfer, 2, 525-530.

Prasad, V. R., Gaffar, S. A., Reddy, E. K., and Bég, O. A. (2014). Flow and heat transfer of Jeffreys non-Newtonian fluid from horizontal circular cylinder. Journal of Thermophysics and Heat Transfer, 28(4), 764-770.

Prasad, V. R., Gaffar, S. A., Reddy, E. K., and Bég, O. A. (2015). Numerical study of non-Newtonian Jeffreys fluid from a permeable horizontal isothermal cylinder in non-Darcy porous medium. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(6), 1765-1783.

Rehman, M., Noreen, S., Haider, A., and Azam, H. (2015). Effect of heat sink/source on peristaltic flow of Jeffrey fluid through a symmetric channel. Alexandria Engineering Journal, 54(3), 733-743.

Roy, S. C. (1971). Withdrawal of cylinders from non‐Newtonian fluids. The Canadian Journal of Chemical Engineering, 49(5), 583-589.

Salleh, M. Z., and Nazar, R. (2010). Free convection boundary layer flow over a horizontal circular cylinder with Newtonian heating. Sains Malaysiana, 39(4), 671-676.

Sheikholeslami, M., Gorji-Bandpay, M., and Ganji, D. D. (2012). Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. International Communications in Heat and Mass Transfer, 39(7), 978-986.

Vajravelu, K., and Hadjinicolaou, A. (1993). Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation. International Communications in Heat and Mass Transfer, 20(3), 417-430.

Yirga, Y., and Shankar, B. (2013). Effects of thermal radiation and viscous dissipation on magnetohydrodynamic stagnation point flow and heat transfer of nanofluid towards a stretching sheet. Journal of Nanofluids, 2(4), 283-291.

Zin, N. A. M., Khan, I., and Shafie, S. (2017). Exact and numerical solutions for unsteady heat and mass transfer problem of Jeffrey fluid with MHD and Newtonian heating effects. Neural Computing and Applications, 1-17.

Zokri, S. M., Arifin, N. S., Mohamed, M. K. A., Salleh, M. Z., Kasim, A. R. M., and Mohammad, N. F. (2017). Influence of radiation and viscous dissipation on magnetohydrodynamic Jeffrey fluid over a stretching sheet with convective boundary conditions. Malaysian Journal of Fundamental and Applied Sciences, 13(3), 279-284.

Downloads

Published

08-03-2018