Boundary layer flow of mixed convection viscoelastic micropolar fluid over a horizontal circular cylinder with aligned magnetohydrodynamic effect

Authors

  • Laila Amera Aziz UNIVERSITI MALAYSIA PAHANG
  • Abdul Rahman Mohd Kasim UNIVERSITI MALAYSIA PAHANG
  • Mohd Zuki Salleh UNIVERSITI MALAYSIA PAHANG
  • Sharidan Shafie UNIVERSITI TEKNOLOGI MALAYSIA
  • Wan Nur Syahidah Wan Yusoff UNIVERSITI MALAYSIA PAHANG

DOI:

https://doi.org/10.11113/mjfas.v0n0.590

Keywords:

Viscoelastic micropolar, horizontal circular cylinder, mixed convection, aligned MHD,

Abstract

The boundary layer flow of a viscoelastic micropolar fluid over a horizontal circular cylinder with aligned magnetohydrodynamic effect is considered. The governing boundary layer equations are transformed into non-dimensional form by using appropriate dimensionless variables. The non-dimensional governing equations are then transformed into similarity equations and solved using an implicit finite difference scheme known as the Keller box method. Numerical results on the distributions of velocity and temperature of fluid are obtained for a range of values of magnetic parameter, M, viscoelastic parameter, K, material parameter, K1, and mixed convection parameter.The graphical representation of the results are presented and it shows that the investigated parameters are significance and affected the fluid flow.

References

Ahmadi, G. (1976). Self-similar solution of imcompressible micropolar boundary layer flow over a semi-infinite plate. International Journal of Engineering Science, 14(7), 639-646.

Alkasasbeh, H. T., Sarif, N. M., Salleh, M. Z., Tahar, R. M., Nazar, R., Pop, I., et al. (2015). Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid. AIP Conference Proceedings, 1643, 662-669.

Allen, S. J., Kline, K. A. (1971). Lubrication theory for micropolar fluids. Journal of Applied Mechanics, 38(3), 646-650.

Anwar, I., Amin, N., Pop, I. (2008). Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder. International Journal of Non-Linear Mechanics, 43(9), 814-821.

Cebeci, T., Bradshaw, P. (1984). Physical and computational aspects of convective heat transfer. Springer, Berlin Heidelberg.

Dandapat, B. S., and Gupta, A. S. (1989). Flow and heat transfer in a viscoelastic fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 24(3), 215-219.

Das, S., Guha, S. K., and Chattopadhyay, A. K. (2004). Theoretical analysis of stability characteristics of hydrodynamic journal bearings lubricated with micropolar fluids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 218(1), 45-56.

Ellahi, R., Rahman, S., Gulzar, M. M., Nadeem, S., and Vafai, K. (2014). A mathematical study of non-Newtonian micropolar fluid in arterial blood flow through composite stenosis. Applied Mathematics & Information Sciences, 8(4), 1567-1573.

Eringen, A. C. (1964). Simple microfluids. International Journal of Engineering Science, 2(2), 205-217.

Eringen, A. C. (1966). Theory of micropolar fluids: West Lafayette, IN: School of Aeronautics and Astronautics, Purdue University.

Eringen, A. C. (2001). Microcontinuum field theories: II. Fluent media New York: Springer.

Guram, G. S., and Smith, A. C. (1980). Stagnation flows of micropolar fluids with strong and weak interactions. Computers & Mathematics with Applications, 6(2), 213-233.

Huang, P. Y., and Feng, J. (1995). Wall effects on the flow of viscoelastic fluids around a circular cylinder. Journal of Non-Newtonian Fluid Mechanics, 60(2), 179-198.

Ishak, A., Nazar, R., and Pop, I. (2007). Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica, 43(4), 411.

Jin, H. W., Rajagopalan, S., Ozekcin, A., Haque, T., Ertas, M. D., Zhao, B., et al. (2013). Coated sleeved oil and gas well production devices: Google Patents. US 8286715 B2, https://www.google.com/patents/US8286715

Kasim, A. R. M., Admon, M. A., and Shafie, S. (2011). Free convection boundary layer flow of a viscoelastic fluid in the presence of heat generation. Elastic, 804, 1646.

Mekheimer, K. S., Elnaqeeb, T., El Kot, M., and Alghamdi, F. (2016). Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an overlapping stenotic artery: Blood flow model. Physics Essays, 29(2), 272-283.

Merkin, J. (1977). Mixed convection from a horizontal circular cylinder International Journal of Heat and Mass Transfer, 20, 73-77.

Misra, J., Chandra, S., Shit, G., and Kundu, P. (2014). Electroosmotic oscillatory flow of micropolar fluid in microchannels: Application to dynamics of blood flow in microfluidic devices. Applied Mathematics and Mechanics, 35(6), 749-766.

Mohd Kasim, A. R. M. K., Mohammad, N. F. M., Shafie, S., Pop, I. (2013). Constant heat flux solution for mixed convection boundary layer viscolastic fluid. Heat Mass Transfer, 49, 163-171.

Naduvinamani, N. B., Kadadi, A. K. (2013). Effect of Viscosity variation on the micropolar fluid squeeze film lubrication of a short journal bearing. Advances in Tribology, 2013, vol. 2013, Article ID 743987.

Nazar, R., Amin, N., Filip, D., and Pop, I. (2004). Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics, 39(7), 1227-1235.

Nazar, R., Amin, N., and Pop, I. (2003). Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: Case of constant wall temperature. International Journal of Numerical Methods for Heat & Fluid Flow, 13(1), 86-109.

Peddieson, J. (1972). An application of the micropolar fluid model to the calculation of a turbulent shear flow. International Journal of Engineering Science, 10(1), 23-32.

Qasim, M., Khan, I., and Shafie, S. (2013). Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating. PloS one, 8(4), e59393.

Rahmatabadi, A. D., Nekoeimehr, M., and Rashidi, R. (2010). Micropolar lubricant effects on the performance of noncircular lobed bearings. Tribology International, 43(1–2), 404-413.

Rajagopal, K. R., Na, T. Y., and Gupta, A. S. (1984). Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 23(2), 213-215.

Salleh, M. Z., Nazar, R., Zaharim, A., and Sopian, K. (2009). Free convection boundary layer flow near the lower stagnation point of a sphere with Newtonian heating in a micropolar fluid. Proceedings of the 4th IASME/WSEAS International Conference on Continuum Mechanics ‘09, WSEAS Press, 174–180.

Ustinov, S. (2016). Features of selection of flow measurement methods and devices for flow measuring of liquefied petroleum gas in pipelines. Undegraduate Thesis, Saimaa University of Applied Sciences Technology, Lappeenranta.

Xiong, Y. L., Bruneau, C. H., and Kellay, H. (2010). Drag enhancement and drag reduction in viscoelastic fluid flow around a cylinder. Europhysics Letters, 91, 64001

Downloads

Published

26-12-2017