Bioremediation Effects and Functional Microorganisms Associated with Cr (VI) Pollution in Groundwater, Using a Mixed Nutrition Model Involving Siderite and Hydrochar
DOI:
https://doi.org/10.11113/mjfas.v21n3.4069Keywords:
Mixed nutrition, Cr (VI) pollution, microorganism.Abstract
The global industrialization process has led to the introduction of heavy metal Cr (VI) into groundwater, posing a significant threat to human health and survival. To address this issue, bio-experimental columns were constructed utilizing siderite and hydrochar as mixed nutrient sources to investigate the effects of microorganisms on Cr (VI) removal. Results indicated that both the hydrochar group and the siderite-hydrochar group achieved complete Cr (VI) removal at an influent Cr (VI) concentration of 0.6 mmol/L. At a higher influent Cr (VI) concentration of 1 mmol/L, the siderite-hydrochar group still exhibited a superior Cr (VI) removal efficiency compared to the individual use of siderite or hydrochar. The X-ray diffraction (XRD) spectra confirmed the reduction of Cr (VI) to insoluble Cr (III) through both microbiological and chemical pathways. Notably, the highest proportion of Acidovorax was observed in the experimental columns of the hydrochar group and siderite-hydrochar group, which may account for the notable removal of Cr (VI) observed in these two experimental columns, Additionally, other bacteria, such as Pseudoxanthomonas, Ruminococcus, and Ruminiclostridium were present in the system, potentially playing crucial roles in Cr (VI) removal. This study underscores the potential of using mixed nutrient sources and microbial communities for effective Cr (VI) remediation in groundwater, providing valuable insights for future research and practical applications in environmental protection.
References
Sharma, A., Kapoor, D., Wang, J., Shahzad, B., Kumar, V., Bali, A. S., Jasrotia, S., Zheng, B., Yuan, H., & Yan, D. (2020). Chromium bioaccumulation and its impacts on plants: An overview. Plants, 9(1), 100.
Irshad, M. A., Sattar, S., Nawaz, R., Al-Hussain, S. A., Rizwan, M., Bukhari, A., Waseem, M., Irfan, A., Inam, A., & Zaki, M. E. A. (2023). Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicology and Environmental Safety, 263, 115231.
Aigbe, U., & Osibote, O. (2020). A review of hexavalent chromium removal from aqueous solutions by sorption technique using nanomaterials. Journal of Environmental Chemical Engineering, 104503.
Islam, Md. M., Mohana, A., Rahman, Md. A., Rahman, M., Naidu, R., & Rahman, M. (2023). A comprehensive review of the current progress of chromium removal methods from aqueous solution. Toxics, 11(3), 252.
Pushkar, B., Sevak, P., Parab, S., & Nilkanth, N. (2021). Chromium pollution and its bioremediation mechanisms in bacteria: A review. Journal of Environmental Management, 287, 112279.
Peng, L., Peng, Y., Xu, Y., & Liang, C. (2022). Heterotrophic bio-reduction process of hexavalent chromium: Toxic effects, concentration-adaptation and sustainable sludge-based bio-augmentation strategy. Journal of Cleaner Production, 370, 133567.
Rahman, Z., & Thomas, L. (2021). Chemical-assisted microbially mediated chromium (Cr) (VI) reduction under the influence of various electron donors, redox mediators, and other additives: An outlook on enhanced Cr (VI) removal. Frontiers in Microbiology.
Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 752–764.
Bibi, I., Niazi, N. K., Choppala, G., & Burton, E. D. (2018). Chromium (VI) removal by siderite (FeCO₃) in anoxic aqueous solutions: An X-ray absorption spectroscopy investigation. Science of the Total Environment, 640–641, 1424–1431.
Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., & Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 255–281.
Panahi, H., Dehhaghi, M., Ok, Y., Nizami, A.-S., Khoshnevisan, B., Mussatto, S. I., Aghbashlo, M., Tabatabaei, M., & Lam, S. (2020). A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. Journal of Cleaner Production, 122462.
Moser, D. P., Fredrickson, J. K., Geist, D. R., Arntzen, E. V., Peacock, A. D., Li, S.-M. W., Spadoni, T., & McKinley, J. P. (2003). Biogeochemical processes and microbial characteristics across groundwater−surface water boundaries of the Hanford Reach of the Columbia River. Environmental Science & Technology, 37(22).
Lu, J., Zhang, B., He, C., & Borthwick, A. G. L. (2020). The role of natural Fe (II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in groundwater. Journal of Hazardous Materials, 389, 121911.
Amikam, G., Fridman-Bishop, N., & Gendel, Y. (2020). Biochar-assisted iron-mediated water electrolysis process for hydrogen production. ACS Omega, 31908–31917.
Wang, S., Zhang, B., Diao, M., Shi, J., Jiang, Y., Cheng, Y., & Liu, H. (2018). Enhancement of synchronous bio-reductions of vanadium (V) and chromium (VI) by mixed anaerobic culture. Environmental Pollution, 249–256.
Sut-Lohmann, M., Ramezany, S., Kästner, F., Raab, T., Heinrich, M., & Grimm, M. (2022). Using modified Tessier sequential extraction to specify potentially toxic metals at a former sewage farm. Journal of Environmental Management, 304, 114229.
Telatin, A. (2021). Qiime artifact extractor (qax): A fast and versatile tool to interact with Qiime2 archives. BioTech, 5.
Zuo, Q., Yang, Y., Xie, X., Yang, L., Zhang, Q., & He, X. (2024). Grinding siderite with ferric sulfate to generate an active ferrous source for Cr (VI) reduction. Chemosphere, 361, 142516.
Kavindi, G., Lei, Z., Yuan, T., Shimizu, K., & Zhang, Z. (2023). Stability of solid form Cr (VI) after being loaded onto hydrochar under different soil pH conditions. Bioresource Technology Reports, 101376.
Kavindi, G., Lei, Z., Yuan, T., Shimizu, K., & Zhang, Z. (2022). Use of hydrochar from hydrothermal co-carbonization of rice straw and sewage sludge for Cr (VI) bioremediation in soil. Bioresource Technology Reports, 18, 101052.
Wang, Z., Lu, N., Cao, X., Li, Q., Gong, S., Lu, P., Zhu, K., Guan, J., & Feike, T. (2023). Interactions between Cr (VI) and the hydrochar: The electron transfer routes, adsorption mechanisms, and the accelerating effects of wood vinegar. Science of the Total Environment, 160957.
Qu, J., Shi, S., Li, Y., Liu, R., Hu, Q., Zhang, Y., Wang, Y., Ma, Y., Hao, X., & Zhang, Y. (2024). Fe/N co-doped magnetic porous hydrochar for chromium (VI) removal in water: Adsorption performance and mechanism investigation. Bioresource Technology, 394, 130273.
Wei, Z., Sixi, Z., Baojing, G., Xiuqing, Y., Guodong, X., & Baichun, W. (2023). Effects of Cr stress on bacterial community structure and composition in rhizosphere soil of Iris tectorum under different cultivation modes. Microbiology Research, 14(1), 243–261.
Ighalo, J. O., Rangabhashiyam, S., Dulta, K., Umeh, C. T., Iwuozor, K. O., Aniagor, C. O., Eshiemogie, S. O., Iwuchukwu, F. U., & Igwegbe, C. A. (2022). Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chemical Engineering Research and Design, 184, 419–456.
Liu, Y., Kang, Z., Wang, Q., Wang, T., Song, N., & Yu, H. (2024). One-step synthesis of ferrous disulfide and iron nitride modified hydrochar for enhanced adsorption and reduction of hexavalent chromium in Bacillus LD513 by promoting electron transfer and microbial metabolism. Bioresource Technology, 396, 130415.
Wei, C., Jiang, F., Cao, Q., Liu, M., Wang, J., Ji, L., Yu, Z., Shi, M., & Li, F. (2024). Insights into the mechanism of efficient Cr (VI) removal from aqueous solution by iron-rich wheat straw hydrochar: Coupling DFT calculation with experiments. Langmuir, 40(26), 13355–13364.
Hu, Y., Chen, N., Liu, T., Feng, C., Ma, L., Chen, S., & Li, M. (2020). The mechanism of nitrate-Cr (VI) reduction mediated by microbial under different initial pHs. Journal of Hazardous Materials, 122434.
Zhou, X., Zhai, S., Zhao, Y., Liu, D., Wang, Q., & Ji, M. (2021). Rapid recovery of inhibited denitrification with cascade Cr (VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. Journal of Hazardous Materials, 411, 125087.
Chovanec, P., Sparacino-Watkins, C., Zhang, N., Basu, P., & Stolz, J. F. (2012). Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms. Frontiers in Microbiology, 3.
Huo, D., Dang, Y., Sun, D., & Holmes, D. E. (2022). Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification. Science of the Total Environment, 154683.
Yang, Y., Chen, T., Zhang, X., Qing, C., Wang, J., Yue, Z., Liu, H., & Yang, Z. (2018). Simultaneous removal of nitrate and phosphate from wastewater by siderite based autotrophic denitrification. Chemosphere, 130–137.
Gong, Y., Niu, Q., Liu, Y., Dong, J., & Xia, M. (2022). Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. Environmental Pollution, 314, 120232.
Hu, Y., Liu, T., Chen, N., & Feng, C. (2022). Changes in microbial community diversity, composition, and functions upon nitrate and Cr (VI) contaminated groundwater. Chemosphere, 288, 132476.
Wang, Q., Song, X., Wei, C., Jin, P., Chen, X., Tang, Z., Li, K., Ding, X., & Fu, H. (2022). In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: A field-scale study. Science of the Total Environment, 150260.
Pradhan, S. K., Singh, N. R., Kumar, U., Mishra, S. R., Perumal, R. C., Benny, J., & Thatoi, H. (2020). Illumina MiSeq based assessment of bacterial community structure and diversity along the heavy metal concentration gradient in Sukinda chromite mine area soils, India. Ecological Genetics and Genomics, 15, 100054.
Salam, L., Obayori, O. S., Ilori, M. O., & Amund, O. O. (2023). Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World Journal of Microbiology and Biotechnology, 39(9).
Martínez-Aldape, P., Sandoval-Vergara, M., Padilla-Hernández, R., Caretta, C., Valerdi-Negreros, J., Casanova, P., Monteiro, M., Gassie, C., Goñi-Urriza, M., Brito, E., & Guyoneaud, R. (2024). Bioprospection of bacterial strains from chromite process industry residues from Mexico for potential remediation. Applied Microbiology, 4(2), 665–681.
Singh, A., Varma, A., Prasad, R., & Porwal, S. (2022). Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. Environmental Research, 215, 114338.
Zheng, X., Yuan, D., Li, Y., & Liu, C. (2019). Exploration of the reduction mechanism of Cr (VI) in anaerobic hydrogen fermenter. Environmental Pollution, 254, 113042.
Lu, Y., Zhang, W., Li, Y., Zhang, C., Wang, L., Niu, L., & Zhang, H. (2021). Microbial community shift via black carbon: Insight into biological nitrogen removal from microbial assemblage and functional patterns. Environmental Research, 192, 110266.
Wang, H., Zhang, S., & Zhang, J. (2023). The copper resistance mechanism in a newly isolated Pseudoxanthomonas spadix ZSY-33. Environmental Microbiology Reports, 15(6), 484–496.
Feng, S., Jiang, Z., Chen, Y., Gong, L., Tong, Y., Zhang, H., Huang, X., & Yang, H. (2021). Simultaneous denitrification and desulfurization-S0 recovery of wastewater in trickling filters by bioaugmentation intervention based on avoiding collapse critical points. Journal of Environmental Management, 292, 112834.
Sun, T., Hu, M., Li, Y., Bi, Q., Zheng, J., Duan, P., & Chang, J. (2024). Simultaneous removal of nitrate, phosphate and Cr (VI) in groundwater by iron-carbon-based constructed wetlands: Performance intensification by organic solid amendments. Journal of Water Process Engineering, 60, 105216.
Zhang, H., Xu, Z., Zhou, P., Zhang, Y., & Wang, Y. (2023). Simultaneous nitrate and chromium removal mechanism in a pyrite-involved mixotrophic biofilter. Environmental Science and Pollution Research, 30(59), 123882–123892.
Deng, R., Huang, D., Lei, L., Zhou, C., Yin, L., Liu, X., Chen, S., Li, R., & Tao, J. (2021). Stabilization of lead in polluted sediment based on an eco-friendly amendment strategy: Microenvironment response mechanism. Journal of Hazardous Materials, 415, 125534.
Wu, C., Zhou, J., Pang, S., Yang, L., Lichtfouse, E., Liu, H., Xia, S., & Rittmann, B. E. (2024). Reduction and precipitation of chromium (VI) using a palladized membrane biofilm reactor. Water Research, 249, 120878.
Ács, N., Szuhaj, M., Wirth, R., Bagi, Z., Maróti, G., Rákhely, G., & Kovács, K. L. (2019). Microbial community rearrangements in power-to-biomethane reactors employing mesophilic biogas digestate. Frontiers in Energy Research, 7.
Sathishkumar, K., Murugan, K., Benelli, G., Higuchi, A., & Rajasekar, A. (2016). Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Annals of Microbiology, 67(1), 91–98.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Shuqin Wang, Mohamad Faiz Foong Abdullah, Zaidah Zainal Ariffin, Yuling Zhu, Baowei Hu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.