Garcinia mangostana Pericarp-Assisted Silver Nanoparticles as a Sustainable Solution for Tetracycline Contaminants Removal from Wastewater

Authors

  • Nurshahira Mohd Rozi Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sheela Chandren ᵃDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; ᵇCentre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norazah Basar Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/mjfas.v21n3.3797

Keywords:

Garcinia mangostana, biosynthesis, silver nanoparticles, photocatalytic, tetracycline.

Abstract

To date, research endeavours are progressively oriented toward uncovering sustainable approaches for synthesizing metal nanoparticles. Biosynthesis methods involving plants have emerged as a viable alternative to foster environmental sustainability. This study explores a one-pot and room-temperature method for synthesizing silver nanoparticles (AgNPs) using agricultural waste, Garcinia mangostana pericarp (GMP), to degrade tetracycline cost-effectively. High-performance liquid chromatography (HPLC) detected the presence of α-mangostin, suggesting a dual-functioning agent in reduction and stabilization in the green synthesis. Ultraviolet-visible spectroscopy (UV-Vis) monitored stable colloid formation and revealed that the formation of AgNPs depends on molar ratio and pH. The optimal conditions for this single-step biosynthesis are: a molar ratio of extract to silver nitrate at 1:31, a basic environment with the extract at pH 10, and an incubation time of 2 hours. The successfully biosynthesized AgNPs were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscope with energy dispersive X-ray (FESEM-EDX), and high resolution-transmission electron microscope (HR-TEM). The characterization unveiled the synthesis of uniformly spherical-shaped and mono-dispersed AgNPs with a size range of 8 to 22 nm and an Ag mass percentage of 65.5%. X-ray diffraction analysis confirmed the synthesized nanoparticle’s face-centered cubic (FCC) crystalline nature with the (111) plane as the dominant peak. The photocatalytic performance of AgNPs was evaluated through the removal of tetracycline under ultraviolet (UV) light. The biosynthesized AgNPs demonstrated a degradation rate of 79%, with a constant rate 33 times greater than just by photolysis. These findings indicate that the plant-mediated biosynthesis of AgNPs is a promising photocatalyst for environmental remediation against tetracycline contaminants.

References

Ohiduzzaman, M., Khan, M., Khan, K., & Paul, B. (2024). Biosynthesis of silver nanoparticles by banana pulp extract: Characterizations, antibacterial activity, and bioelectricity generation. Heliyon, 10(3), 1–12.

Liu, H., Liu, J., Wang, S., Jin, Z., Ma, R., Zhang, W., Wang, J., Li, J., Song, C., Zhang, S., & Chen, H. (2022). Effect of silver nano-particles and nano-wires on properties of electrically conductive adhesives. Microelectronics Reliability, 135, 114571.

Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Sciences, 22(13), 1–21.

da Silva, W. L., Druzian, D. M., Oviedo, L. R., Muraro, P., & Oviedo, V. R. (2021). Silver nanoparticles for photocatalysis and biomedical applications. IntechOpen, 95922.

Kapoor, R. T., Salvadori, M. R., Rafatullah, M., Siddiqui, M. R., Khan, M. A., & Alshareef, S. A. (2021). Exploration of microbial factories for synthesis of nanoparticles – A sustainable approach for bioremediation of environmental contaminants. Frontiers in Microbiology, 12, 658294.

Nam, N. T. H., Linh, N. T. T., Dat, N. M., Bao, P. P., Tinh, N. T., Cong, C. Q., Hai, N. D., Giang, N. T. H., Phong, M. T., & Hieu, N. H. (2023). Applications of highly stable silver nanoparticles from Garcinia mangostana pericarp extract: Bioactivities, catalysis, and optical sensing. Chemistry Select, 8(38).

Sha, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Journal of Materials, 8(11), 7278–7308.

Hossain, M. A., Paul, B., Khan, K. A., Paul, M., Mamun, M., & Quayum, M. E. (2022). Green synthesis and characterization of silver nanoparticles by using Bryophyllum pinnatum and the evaluation of its power generation activities on bio-electrochemical cell. Material Chemistry and Physics, 282, 125943.

Hasan, M., Teng, Z., Iqbal, J., Awan, U., Meng, S., Dai, R., Qing, H., & Deng, Y. (2013). Assessment of bioreducing and stabilizing potential of Dragon’s Blood (Dracaena cochinchinensis, Lour. S. C. Chen) resin extract in synthesis of silver nanoparticles. Nanoscience and Nanotechnology Letters, 5(7), 780–784.

Chew, S. Y., Teoh, S. Y., Sim, Y. Y., & Nyam, K. L. (2021). Optimization of ultrasonic extraction condition for maximal antioxidant, antimicrobial, and antityrosinase activity from Hibiscus cannabinus L. leaves by using the single factor experiment. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100321.

Nayak, S., Bhat, M. P., Udayashankar, A. C., Laksmeesha, T. R., Geetha, N., & Jogaiah, S. (2020). Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Applied Organometallic Chemistry, 34(4), 5567.

Chouhan, S., & Guelria, S. (2020). Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast, and α-amylase inhibitory activity. Materials Science for Energy Technologies, 3, 536–544.

Asif, M., Yasmin, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 20(2).

Giri, A. K., Jena, B., Biswal, B., Pradhan, A. K., Arakha, M., Acharya, S., & Acharya, L. (2022). Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. extract and activity against biofilm-producing bacteria. Scientific Reports, 12(1), 1–9.

Obolskiy, D., Pischel, I., Siriwatanametanon, N., & Heinrich, M. (2009). Garcinia mangostana L.: A phytochemical and pharmacological review. Phytotherapy Research, 23(8), 1047–1065.

Yao, T. L., Nazre, M., Mckey, D., Jalonen, R., & Duminil, J. (2023). The origin of cultivated mangosteen (Garcinia mangostana L. var. mangostana): Critical assessments and an evolutionary-ecological perspective. Ecology and Evolution, 13(3), e9792.

Lin, C. S., Lin, C. L., Ying, T. H., Chiou, H. L., Hung, C. H., Liao, W. S., Hsieh, Y. H., & Kao, S. H. (2020). β-Mangostin inhibits the metastatic power of cervical cancer cells attributing to suppression of JNK2/AP-1/Snail cascade. Journal of Cellular Physiology, 235(11), 8446–8460.

Zhou, X., Chen, H., Wei, F., Zhao, Q., Su, Q., Lei, Y., Yin, M., Tian, X., Liu, Z., Yu, B., Bai, C., He, X., & Huang, Z. (2019). α-Mangostin attenuates pristane-induced lupus nephritis by regulating Th17 differentiation. International Journal of Rheumatic Diseases, 23(1), 74–83.

Bumrung, J., Chanchao, C., Intasanta, V., Palaga, T., & Wanichwecharungruang, S. (2020). Water-dispersible unadultered α-mangostin particles for biomedical applications. Royal Society Open Science, 7(11), 200543.

Li, Q., Yan, X. T., Zhao, L. C., Ren, S., He, Y. F., Liu, W. C., Wang, Z., Li, X. D., Jiang, S., & Li, W. (2020). α-Mangostin, a dietary xanthone, exerts protective effects on cisplatin-induced renal injury via PI3K/Akt and JNK signaling pathways in HEK293 cells. ACS Omega, 5(32), 19960–19967.

Masullo, M., Cerulli, A., Cannavacciuolo, C., Kılınç, H., Pizza, C., & Piacente, S. (2022). Garcinia mangostana L. fruits and derived food supplements: Identification and quantitative determination of bioactive xanthones by NMR analysis. Journal of Pharmaceutical and Biomedical Analysis, 218, 114835.

Govindachari, T., Kalyanaraman, P., Muthukumaraswamy, N., & Pai, B. (1971). Xanthones of Garcinia mangostana Linn. Tetrahedron, 27(16), 3919–3926.

Valdivia, M. T., Taggart, M., Pap, S., Kean, A., Pfleger, S., & Megson, I. (2023). Photocatalytic metallic nanomaterials immobilized onto porous structures: Future perspectives for at-source pharmaceutical removal from hospital wastewater and potential benefits over existing technologies. Journal of Water Process Engineering, 52, 103553.

Scaria, J., Anupama, K. V., & Nidheesh, P. V. (2021). Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of The Total Environment, 771, 145291.

Wirtz, V. J., Dreser, A., & Gonzales, R. (2010). Trends in antibiotic utilization in eight Latin American countries, 1997–2007. Revista Panamericana de Salud Pública, 27(3), 219–225.

Dolan, J. (2003). How much is enough? LC-GC Europe, 6, 740–745.

Patra, N., Dehury, N., Pal, A., Behera, A., & Patra, S. (2018). Preparation and mechanistic aspect of natural xanthone functionalized gold nanoparticles. Materials Science & Engineering C, 90, 439–445.

Hassan Afandy, H., Sabir, D. K., & Aziz, S. B. (2023). Antibacterial activity of the green synthesized plasmonic silver nanoparticles with crystalline structure against gram-positive and gram-negative bacteria. Nanomaterials, 13(8), 1327.

Neethu, S., Midhun, S. J., Sunil, M. A., Soumya, S., Radhakrishnan, E. K., & Jyothis, M. (2018). Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. Journal of Photochemistry and Photobiology B: Biology, 180, 175–185.

Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R., Herrera-Urbina, R., Tánori, J., Iñiguez-Palomares, C., & Maldonado, A. (2013). Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Research Letters, 8(1), 1–9.

Aslam, M., Fozia, F., Gul, A., Ahmad, I., Ullah, R., Bari, A., Mothana, R. A., & Hussain, H. (2021). Phyto-extract-mediated synthesis of silver nanoparticles using aqueous extract of Sanvitalia procumbens and characterization, optimization, and photocatalytic degradation of azo dyes Orange G and Direct blue-15. Molecules, 26(20), 6144.

Handayani, W., Ningrum, A. S., & Imawan, C. (2020). The role of pH in synthesis silver nanoparticles using Pometia pinnata (Matoa) leaves extract as bioreductor. Journal of Physics: Conference Series, 1428, 012021.

Farrokhnia, M., Karimi, S., & Askarian, S. (2019). Strong hydrogen bonding of gallic acid during synthesis of an efficient AgNPs colorimetric sensor for melamine detection via dis-synthesis strategy. ACS Sustainable Chemistry & Engineering, 7(7), 6672–6684.

Davidović, S., Lazić, V., Vukoje, I., Papan, J., Anhrenkiel, S. P., Dimitrijević, S., & Nedeljković, J. M. (2017). Dextran coated silver nanoparticles—Chemical sensor for selective cysteine detection. Colloids and Surfaces B: Biointerfaces, 160, 184–191.

Tiwari, H., Samal, K., Geed, S. R., Bera, S., Das, C., & Mohanty, K. (2023). Green synthesis of silver nanoparticles for ultrafiltration membrane surface modification and antimicrobial activity. Sustainable Chemistry for Climate Action, 3, 100031.

Alobaid, H. M., Alzhrani, A. H., Majrashi, N. A., Alkhuriji, A. F., Alajmi, R. A., Yehia, H. M., Awad, M. A., Almurshedi, A. S., Almnaizel, A. T., & Elkhadragy, M. F. (2022). Effect of biosynthesized silver nanoparticles by Garcinia mangostana extract against human breast cancer cells line MCF-7. Food Science and Technology, 42, e102221.

Yoosaf, K., Ipe, B. T., Suresh, C. H., & Thomas, K. G. (2007). In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. The Journal of Physical Chemistry C, 111(34), 12839–12847.

Khan, M., Khan, A., Rafatullah, M., Mahboob, A., Bogdanchikova, N., & Garibo, D. (2022). Search for effective approaches to fight microorganisms causing high losses in agriculture: Application of P. lilacinum metabolites and mycosynthesised silver nanoparticles. Biomolecules, 12(2), 174.

Perera, K. M. K. G., Kuruppu, K. A. S. S., Chamara, A. M. R., & Thiripuranathar, G. (2020). Characterization of spherical Ag nanoparticles synthesized from the agricultural wastes of Garcinia mangostana and Nephelium lappaceum and their applications as a photocatalyzer and fluorescence quencher. SN Applied Sciences, 2(12), 1974.

Veerasamy, R., Xin, T. Z., Gunasagaran, S., Wei Xiang, T. F., Chou Yang, E. F., Jeyakumar, N., & Dhanaraj, S. A. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2), 113–120.

Masum, M. M. I., Siddiqa, M. M., Ali, K. A., Zhang, Y., Abdallah, Y., Ibrahim, E., Qiu, W., Yan, C., & Li, B. (2019). Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in Microbiology, 10, 820.

Judy Azar, A. Z., & Mohebbi, S. (2013). One-pot greener synthesis of silver nanoparticles using tangerine peel extract: Large-scale production. Micro & Nano Letters, 8(11), 813–815.

Ali, M. H., Kalam Azad, M. A., Khan, K. A., Rahman, M. O., Chakma, U., & Kumer, A. (2023). Analysis of crystallographic structures and properties of silver nanoparticles synthesized using PKL extract and nanoscale characterization techniques. ACS Omega, 8(31), 28133–28142.

Alzahrani, E. (2020). Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of mercury using green-synthesized silver nanoparticles. Journal of Analytical Methods in Chemistry, 2020, 1–12.

Singh, H., Du, J., & Yi, T. H. (2017). Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 602–608.

Gupta, A., Koirala, A. J., Gupta, B., & Parajuli, N. (2019). Improved method for separation of silver nanoparticles synthesized using the Nyctanthes arbor-tristis shrub. Acta Chemica Malaysia, 3(1), 35–42.

Fatimah, I., & Aftrid, Z. H. V. I. (2019). Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus tricolor L.) leaf extract. Green Chemistry Letters and Reviews, 12(1), 25–30.

Olusegun, S. J., Larrea, G., Osial, M., Jackowska, K., & Krysinski, P. (2021). Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycline case. Catalysts, 11(10), 1243.

Downloads

Published

12-06-2025