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Abstract  The performance of natural rubber (NR) relies heavily on the microstructural 
changes during deformation. This has brought to significant change in the stress response of NR. 
Besides, the stretching rate may also affect the stress response of NR. In this study, effects of 
stretching rate on tensile deformation and strain-induced crystallization of crosslinked NR were 
investigated. Results indicated that increasing the strain rate has increased the stress at given 
strain where the onset of strain-induced crystallization was shifted to a lower strain. The 
crystallinity of the crosslinked NR was shown to be higher at a high stretching rate and it 
corresponded well with the tensile response. The results clearly confirm that chain orientation and 
crystallization became stronger with increasing deformation rate. The study also suggests that the 
deformation could improve distribution of crosslinked network structures. 
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Introduction 

 
The mechanical performance of rubber materials is normally monitored by various techniques depending 
on the designed experimental. One of the parameters that frequently set is the strain rate or deformation 
rate during the testing. This parameter may affect the final result especially in the case of NR.  This is 
because of the different in the ability of rubber to generate crystallization [1-3]. Various techniques have 
been applied to investigate the effects of strain rate, including dynamic compressive testing [4], tensile 
impact testing [2], and uniaxial compression testing [5]. The results have usually shown that increasing 
the stretching rate increases modulus and tensile strength, but maximal elongation decreases. 
 
Uniaxial tensile testing in the vertical direction is the most common and extensively used technique for 
investigating the mechanical properties of rubbers. This is because the tensile test does not only provide 
useful information about the ultimate strength and extensibility, but also the modulus across a range of 
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strains. Moreover, it has been recognized that the results from tensile tests correlate with other physical 
properties like abrasion resistance, tear resistance, and flex-cracking resistance [6]. Various studies 
have reported on the influences of strain rate on the mechanical properties and deformation-induced 
crystallization manner of rubber. Mott et al., [7] measured the mechanical responses of elastomers at 
different strain rates in horizontal direction. They found that the stress at a given strain and the tensile 
strength increased with strain rate, but the maximal elongation was independent of rate. Hussein [8] and 
Cheng and Cheng [9] also reported that stress hardening increases with stretching rate in the blend of 
Butyl rubber (IIR)/ high molecular weight polyethylene (PE) and ethylene-propylene-diene terpolymer 
(EPDM), respectively. Miyamoto et al., [10] investigated crystallization and melting of polyisoprene 
rubber under uniaxial deformation and found that the hardening of rubber progressively decreased with 
strain rate, and Candau et al., [11] investigated the effects of strain rate and temperature on the onset of 
strain-induced crystallization in NR. They reported that the onset of crystallization happened earlier as 
strain rates increased, but how the strain rate affected crystallinity was not clearly discussed. 
 
Although several reports have addressed strain rate effects, no consistent conclusions have been drawn. 
None of the prior studies have paid attention to the relationship between stress response and structural 
features impacted by the strain rate. This study was designed to assess key structural features for 
comparison over a range of deformation rates.  
 
To understand the effects of stretching rate on tensile properties and crystallization behavior with 
variation of stretching, two stretching rates and two types of vulcanized NR samples were selected. The 
tensile properties were investigated by using a universal tensile testing machine. The crystallization 
behavior was studied by means of wide angle X-ray diffraction (WAXD), and the other structural changes 
were assessed from small angle X-ray scattering (SAXS) measurements. 
 

Materials and methods 
 

Materials 
NR of STR5L type was purchased from Chalong Concentrated Natural Rubber Latex Industry Co., Ltd., 
Songkhla, Thailand. Zinc oxide (ZnO) was manufactured by Imperial Chemical Co. Ltd., Pathumthani, 
Thailand. Stearic acid was supplied by Global Chemical Co. Ltd., Samut Prakarn, Thailand. N-
cyclohexyl-benzothiazyl-sulphenamide (CBS) was purchased from Flexsys America L.P., West Virginia, 
USA, and sulfur was produced by Siam Chemical Co., Ltd., Samut Prakan, Thailand.  
 
Sample preparation   
NR compounds containing stearic acid, ZnO, CBS and sulfur were prepared by using a laboratory-size 
internal mixer. The list of chemicals and mixing steps as well as mixing times are presented in Table 1. 
The total mixing time was kept constant at 5 min. The obtained compounds were compression-molded 
at 160 °C following their respective curing times. To determine the effects of stretching rate on 
deformation response, tensile properties and micro-structural transformations, two compound 
formulations with different sulfur and accelerator contents were chosen, and are labelled as S/A 2.5/0.5 
and S/A 1.0/2.0.    

 
 

Table 1. Compound formulations used in this study 
 

Ingredient 
Quantity (phr) 

Mixing time (min) 
S/A 2.5/0.5 S/A 1.0/2.0 

NR 100 100 2 
Stearic acid 1 1 

1 
ZnO 3 3 
S 2.5 1.0 1 
CBS 0.5 2.0 1 
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Tensile properties  
The tensile properties of vulcanized NR were tested by using a universal tensile testing machine (LLOYD 
Instruments, LR5K Plus, UK). The tensile test was carried out at room temperature with two alternative 
stretching rates, namely 50 mm/min and 500 mm/min. Five replications were performed and the results 
reported are averages. 
 
Crystallization behavior and structural changes     
Strain-induced crystallization behaviors and microstructural transformations, i.e., crack formation in the 
vulcanized NR samples under tensile stretching, were investigated by means of wide angle X-ray 
diffraction (WAXD) and small angle X-ray scattering (SAXS). Both WAXD and SAXS were performed at 
the Siam Photon Laboratory, Synchrotron Light Research Institute (SLRI), Nakhon-Ratchasima, 
Thailand. To correlate the microstructural changes with tensile deformation test, the vulcanized NR 
specimens were simultaneously tested as they were stretched at a given crosshead speed (50 mm/min 
or 500 mm/min). The 2D-WAXD and 2D-SAXS data were collected and analyzed by using SAXSIT4.41 
software. 
 
The percentage of crystallinity (Xc) corresponding to (200) and (120) planes was calculated as follows 
[12].  
 

Xc (%) = Ac/(Ac + Aa) × 100                                                  (1) 
 
where, Ac is the area of crystalline peaks assigned to the (200) or (120) planes and Aa is the area of the 
amorphous halo.  
  
The crystallite size was estimated from the Scherrer equation [12,13].  
 

Lhkl = Kλ/β cos θ                                                             (2) 
 
where, Lhkl refers to the size of a crystallite in the direction perpendicular to the (hkl) plane, K is equal to 
0.89, λ is the wavelength, β is the half-width of a peak at half-height, and θ is the Bragg angle of that 
peak.   
 

Results and discussion 
 
Tensile properties  
Figure 1 shows representative of stress-strain curves of the crosslinked NR samples stretched at 50 
mm/min and 500 mm/min respectively. The stress in all cases progressively increased over the 
deformation. This is a typical shape of the stress response obtained from a rubber vulcanizate sample 
subjected to a uniaxial tensile test [14]. The ultimate stress and the stress at given strain were found to 
be higher especially at higher strain rate, i.e., 500 mm/min. The vulcanizate samples appeared to 
become stronger and stiffer with an increased strain rate. These results disagree with previous reports 
who found that the hardening progressively decreased over the strain rate [10,11]. However, an 
increasing trend of stress hardening with stretching rate is corroborated by some prior studies [8,9]. This 
phenomenon may be explained by the fact that when the deformation rate increased, the molecular 
chain mobility and reorientation were restricted by kinetic constraints, so the chains responded as 
apparently stiffer material. On the other hand, these molecular chains have sufficient time to re-orient 
and relax at a lower deformation rate [5]. It was also observe that the elongation at break decreased 
slightly at higher strain rate. This finding may be different to the case of butyl rubber and high molecular 
weight polyethylene elastomer blends reported previously [8], they found out that the strain was found 
to be higher when higher strain rate was applied due to secondary molecular processes [8,15,16]. 
Different phenomenon found may be attributed to the completely different choices of tested materials. 
However, the mentioned study agreed well with the works related to the stress-strain behavior of 
thermoplastics, especially after yielding point but this phenomenon was unusual for rubber like materials.   
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Figure 1. Stress strain curves of two alternative NR samples subjected to different stretching rates. 
 
 
Crystallization behavior and structural changes    
Figure 2 shows typical 2-dimensional (2D) WAXD images of NR samples at various strains and strain 
rates. In these images, the reflection spots were assigned to various crystallographic planes. Among the 
most intense reflection spots, the crystallographic planes (200) and (120) are of interest. The WAXD 
images of all samples with both stretching rates (50 mm/min and 500 mm/min) showed no reflection 
spots at 0% strain, indicating no initial crystallinity. At over 300% strain, the reflection spots assigned to 
crystallographic planes (200) and (120) were detected (marked by red circles) confirming strain-induced 
crystallization. These reflections were more intense at higher strain rate (i.e., 500 mm/min). With further 
deformation, these reflection spots became clearer as the strain fastened the progress of chain 
orientation and crystallization [17]. Thus, stronger intensity of the reflections with the higher crystallinity 
level is expected at larger deformations.  
 
In Figure 3, the patterns showed no crystal peaks at 0% strain unless the amorphous structure. This is 
simply due to the lack of initial crystallinity. Two diffraction peaks were observed when the deformation 
over 300% strain. One was located at 2θ of about 14°, corresponding to the (200) plane, while another 
was at 2θ of about 21° corresponding to the (200) plane [18,19]. These two peaks became more 
pronounced with further deformation. It is also clearly seen from Figure 3 that the peaks corresponding 
to (200) and (120) planes were stronger with deformation rate of 500 mm/min than with 50 mm/min. The 
results clearly confirm that chain orientation and crystallization during stretching increased with 
deformation rate. 
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Figure 2.  2D-WAXD images of two alternative NR sample type, stretched at different rates to various 
strains. 
 

 
 

Figure 3.  WAXD patterns of two alternative NR samples at different stretching rates, (A) S/A 2.5/0.5 and (B) S/A 1.0/2.0. 
 

Figure 4 shows the degrees of crystallinity corresponding to (200) and (120) planes of two alternative 
sample types at stretching rates of 50 mm/min and 500 mm/min. For the same type of sample, it is clearly 
seen that applying the strain rate at 500 mm/min has caused to increase in the degree of crystallinity as 
compared to that with 50 mm/min, at any given strain (Figures 4 (A) – (D)). Moreover, the strain at which 
the crystallization appears shifted to a lower strain when the sample was deformed at a higher stretching 
rate. This implies that strain-induced crystallization became stronger over the strain rate, at least for the 
two stretching rates tested here. The increase of crystallinity matches well the tensile responses: 
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increased stress during tensile stretching was (at least partly) due to strain-induced crystallization. Even 
though the results suggests that orientation of the rubber chains increasing with stretching rate, in some 
cases strain-induced crystallization can involve unoriented chains from the surrounding amorphous 
phase [20]. Thus, the details of chain orientation during low and high deformation rates could warrant 
further investigation, as the mechanisms involved are not simple and straightforward.   
 

  
 

Figure 4.  Degrees of crystallinity (Xc) for two alternative sample types at different stretching rates; (A) 
Xc corresponding to (200) plane of S/A 2.5/0.5, (B) Xc corresponding to (120) plane of S/A 2.5/0.5, (C) 
Xc corresponding to (200) plane of S/A 1.0/2.0, and (D) Xc corresponding to (120) plane of S/A 1.0/2.0. 

 
 

Figure 5 shows variations in crystallite size corresponding to (200) and (120) planes of NR samples with 
strain, assigned to L200 and L120, respectively. The L200 was found to be more sensitive to the 
deformation than the L120. This is consistent with a previous report [20]. The L200 of both samples 
tended to decrease slightly with strain at both stretching rates, indicating decreasing mean distance 
between the stretched chains acting as crystallite precursors [21]. It is also seen that the crystallite size 
with high deformation rate was slightly smaller than with low stretching rate, for both types of samples. 
This may have been caused by the higher degree of crystallinity with higher stretching rate, as previously 
indicated by Figure 4. To further understand the changes of crosslinked network structures, in relation 
to strain and deformation rate, SAXS was performed. 

 
Figure 6 displays representative plots of intensity I(q) as a function of the scattering vector, q for S/A 
2.5/0.5 at the two deformation rates. The q can be defined as (4π/λ) sin θ, where λ and 2θ are the 
wavelength and scattering angle. It should be mentioned that SAXS for S/A 1.0/2.0 had similar trend as 
for the other sample type, S/A 2.5/0.5.  It can be seen from Figure 6 that the intensity gradually decreased 
with strain at both deformation rates, implying that the changes of network structure during stretching 
were almost similar. This is because the stretching only reoriented scattering bodies [22], namely 
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crosslinked network structures. Reduction of SAXS intensity can be also correlated to heterogeneous 
distribution of the scattering bodies [23]. The network structures in the crosslinked NR was more 
homogeneously distributed with stretching.   

 

 
 

Figure 5.  Crystalline sizes of (200) and (120) planes for sample types S/A 2.5/0.5 (A and B), and S/A 
1.0/2.0 (C and D) when stretched at 50 and 500 mm/min. 
 

 
 

Figure 6. Representative plots of intensity versus strain for S/A 2.5/0.5 sample at the two deformation 
rates (A) 50 mm/min and (B) 500 mm/min. 



 

 
224 

Masa et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 217-225 

Conclusions 
 

Influences of stretching rate, tested at 50 mm/min and 500 mm/min, on tensile response and structural 
features of crosslinked NR were investigated. Two types of samples were tested to confirm the effects 
of deformation rate on property changes. The results showed that a high deformation rate increased the 
stress level at a given strain, gave earlier onset of strain-induced crystallization, and increased chain 
orientation and crystallinity as compared to a low stretching rate. Stretching facilitated homogeneity of 
the distribution of crosslinks in networks, and the deformation rate only slightly affected observable 
changes in microstructure.    
 

Conflicts of interest 
 

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper. 
 

Funding statement 
 

Prince of Songkla University (Grant No. RDO6202102S). 
 

Acknowledgments 
 

Financial support from Prince of Songkla University (Grant No. RDO6202102S) is gratefully 
acknowledged. Research and Development Office (RDO) of Prince of Songkla University is also 
acknowledged for assistance in editing the English language in this manuscript. 
 

References 
 
[1] M. L. Dannis, “Stress-strain testing of rubber at high rates of elongation,” Rubber Chemistry and Technology, 

vol. 36, no. 1, pp. 28-49, 1963.  
[2] M. S. H. Fatt and I. Bekar, “High-speed testing and material modeling of unfilled styrene butadiene vulcanizates 

at impact rates,” Journal of Materials Science, vol. 39, no. - , pp. 6885-6899. 2004.  
[3] C. M. Roland, “Mechanical behavior of rubber at high strain rates,” Rubber Chemistry and Technology, vol. 79, 

no. 3, pp. 429-459, 2006. 
[4] B. Song and W. Chen, “One-dimensional dynamic compressive behavior of EPDM rubber,” Journal of 

Engineering Materials and Technology, vol. 125, no. 3, pp. 294-301, 2003. 
[5] O. A. Shergold, N. A. Fleck and D. Radford, “The uniaxial stress versus strain response of pig skin and silicone 

rubber at low and high strain rates,” International Journal of Impact Engineering, vol. 32, no. 9, pp. 1384-1402, 
2006. 

[6] L. Mullins, “Effect of stretching on the properties of rubber,” Rubber Chemistry and Technology, vol. 21, no. 2, 
pp. 281-300, 1948.  

[7] P. H. Mott, J. N. Twigg, D. F. Roland, H. S. Schrader, J. A. Pathak and C. M. Roland, “High-speed tensile test 
instrument,” Review of Scientific Instruments, vol. 78, no. 4, Article ID 045105, 2007. 

[8] M. Hussein, “Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced 
elastomers based on butyl rubber and high molecular weight polyethylene,” Results in Physics, vol. 9, no. -, pp. 
511-517, 2018.  

[9] M. Cheng and W. Chen, “Experimental investigation of the stress–stretch behavior of EPDM rubber with loading 
rate effects,” International Journal of Solids and Structures, vol. 40, no. 18, pp. 4749-4768, 2003. 

[10] Y. Miyamoto, H. Yamao and K. Sekimoto, “Crystallization and melting of polyisoprene rubber under uniaxial 
deformation,” Macromolecules, vol. 36, no. 17, pp. 6462-6471, 2003.  

[11] N. Candau, R. Laghmach, L. Chazeau, J. M. Chenal, C. Gauthier, T. Biben and E. Munch. “Influence of strain 
rate and temperature on the onset of strain induced crystallization in natural rubber,” European Polymer Journal, 
vol. 64, no. -, pp. 244-252, 2015. 

[12] M. Tosaka, S. Murakami, S. Poompradub, S. Kohjiya, Y. Ikeda, S. Toki, I. Sics and B. S. Hsiao, “Orientation 
and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation,” 
Macromolecules, vol. 37, no. 9, pp. 3299-3309, 2004. 

[13] Y. Ikeda, Y. Yasuda, K. Hijikata, M. Tosaka and S. Kohjiya, “Comparative study on strain-induced crystallization 
behavior of peroxide cross-linked and sulfur cross-linked natural rubber,” Macromolecules, vol. 41, no. 15, 5876-



 

 
225 

Masa et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 217-225 

5884, 2008. 
[14] X. Chen, X. X. Li and U. R. Cho, “Preparation of hydroxyethyl cellulose-bamboo charcoal (HxBy) hybrid and its 

application to reinforcement of natural rubber,” Polymer (Korea), vol. 43, no. 3, pp. 351-358, 2019. 
[15] J. Richeton, S. Ahzi, L. Daridon and Y. Rémond, “A formulation of the cooperative model for the yield stress of 

amorphous polymers for a wide range of strain rates and temperatures,” Polymer, vol. 46, no. 16, pp. 6035-
6043, 2005.  

[16] D. Rana, V. Sauvant and J. L. Halary, “Molecular analysis of yielding in pure and antiplasticized epoxy-amine 
thermosets,” Journal of Materials Science, vol. 37, no. -, pp. 5267-5274, 2002. 

[17] A. Masa, S. Iimori, R. Saito, H. Saito, T. Sakai, A. Kaesaman and N. Lopattananon, “Strain-induced 
crystallization behavior of phenolic resin crosslinked natural rubber/clay nanocomposites,”  Journal of Applied 
Polymer Science, vol. 132, no. 39, Article ID 42580, 2015.  

[18] A. Masa, R. Saito, H. Saito, T. Sakai, A. Kaesaman and N. Lopattananon, “Phenolic resin-crosslinked natural 
rubber/clay nanocomposites: Influence of clay loading and interfacial adhesion on strain-induced crystallization 
behavior,” Journal of Applied Polymer Science, vol. 133, no. 12, Article ID 43214, 2016. 

[19] S. Toki, I. Sics, S. Ran, L. Liu and B. S. Hsiao, “New insights into structural development in natural rubber during 
uniaxial deformation by in situ synchrotron X-ray diffraction,” Macromolecules, vol. 35, no. 17, pp. 6578-6584, 
2002. 

[20] M. Tosaka, S. Kohjiya, Y. Ikeda, S. Toki and B. S. Hsiao, “Molecular orientation and stress relaxation during 
strain-induced crystallization of vulcanized natural rubber,” Polymer Journal, vol. 42, no. -, pp. 474-481, 2010. 

[21] H. P. Klug and L. E. Alexander, “X-ray diffraction procedures: For polycrystalline and amorphous materials,” 
Wiley, New York, 1974. 

[22] G. Weng, G. Huang, H. Lei, L. Qu, Y. Nie and J. Wu, “Crack initiation and evolution in vulcanized natural rubber 
under high temperature fatigue integrated intensity,” Polymer Degradation and Stability, vol. 96, no. 12, pp. 
2221-2228, 2011. 

[23] N. Osaka, M. Kato and H. Saito, “Mechanical properties and network structure of phenol resin crosslinked 
hydrogenated acrylonitrile-butadiene rubber,” Journal of Applied Polymer Science, vol. 129, no. 6, pp. 3396-
3403, 2013. 

 
 


