Size-exclusion liquid chromatography for effective purification of amphiphilic trinuclear gold(I) pyrazolate complex
DOI:
https://doi.org/10.11113/mjfas.v14n1-2.953Keywords:
Gold(I) pyrazolate complex, purification, recycle, size-exclusion chromatographyAbstract
Column gravity chromatography suffered from several drawbacks such as time-consuming and need a large amount of eluents. Herein we reported an efficient technique for effective separation of amphiphilic trinuclear gold(I) pyrazolate complex ([Au3Pz3]C10TEG) with high polarity based on size-exclusion principle of chromatographic technique. Based on the size-exclusion limit, [Au3Pz3]C10TEG having a larger size with molecular weight of 4011.39 Da (4030.40 Da when added Na+) was successfully eluted and collected firstly from its impurities after being recycled for 2 times. In the chromatogram for first cycle, an intense peak upon excitation at 220 nm for [Au3Pz3]C10TEG was observed at retention time of 58 mins, while small peaks due to the presence of impurities was observed in the range between 73 to 85 mins. In the second cycle, the impurities were flushed away before [Au3Pz3]C10TEG was successfully collected at retention time of 170 mins in the third cycle. The columns were a set of polystyrene/divinylbenzene (PS/DVB) JAIGEL-1H and -2.5H connected in series having exclusion limit of 1 X 103 and 2 X 104 in which chloroform was used as the eluent at flow rate of 3.5 mL min-1. As a result, the visual appearance of dark-yellowish [Au3Pz3]C10TEG was successfully purified to give pale-yellowish product. Moreover, differential scanning calorimetry thermogram showed that extra shoulder from impurities at 6.13 °C in the first endothermic peak of [Au3Pz3]C10TEG at 0.76 °C was completely removed. Hence, it can be concluded that size-exclusion chromatography can be used as an effective purification method with much more convenience and small consumption of solvents.
References
Barberá, J., Elduque, A., Giménez, R., Oro, L. A., Serrano, J. L. 1996. Pyrazolate “golden” rings: Trinuclear complexes that form columnar mesophases at room temperature. Angew. Chem. Int. Ed. 35, 2832-2835.
DeAngelis, N. J., Papariello, G. J. 1968. Differential scanning calorimetry: Advantages and limitations for absolute purity determinations. J. Pharm. Sci. 57, 1868-1872.
Hadjichristidis, N., Hirao, A., Tezuka, Y., Du Prez, F. 2011. Complex macromolecular architectures: Synthesis, characterization, and self-assembly. John Wiley & Sons (Asia) Pte Ltd, p. 53-54.
Jalani, M. A., Yuliati, L., Endud, S., Lintang, H. O. 2014a. Synthesis of mesoporous silica nanocomposites for preparation of gold nanoparticles. Adv. Mat. Res. 925, 233-237.
Jalani, M. A., Yuliati, L., Lintang, H. O. 2014b. Thermal hydrogen reduction for synthesis of gold nanoparticles in the nanochannels of mesoporous silica composite. Jurnal Teknologi 70, 131-136.
Kim, S. J., Kang, S. H., Park, K. M., Kim, H., Zin, W. C., Choi, M. G., Kim, K. 1998. Trinuclear gold(I) pyrazolate complexes exhibiting hexagonal columnar mesophases with only three side chains. Chem. Mater. 10, 1889-1893.
Kishimura, A., Yamashita, T., Aida, T. 2005. Phosphorescent organogels via “metallophilic” interactions for reversible RGB−color switching. J. Am. Chem. Soc. 127, 179-183.
Kumar, S., Varshney, S. K. 2000. A room-temperature discotic nematic liquid crystal. Angew. Chem. Int. Ed. 39, 3140-3142.
La, M. G., Ardizzoia, G. A. 1997. The role of the pyrazolate ligand in building polynuclear transition metal systems. Prog. Inorg. Chem. 46, 151-238.
Lintang, H. O, Kinbara, K., Aida, T. 2011. Effect of acidic aqueous alcohol solution on template sol-gel synthesis of phosphorescent hexagonal mesoporous silica film nanocomposite. Mal. J. Fund. Appl. Sci. 7, 67-71.
Lintang, H. O, Kinbara, K., Aida, T. 2012b. Thermally resistive phosphorescent molecular assembly in the channels of mesoporous silica nanocomposites. 2012 Proceedings of International Conferences on Enabling Science and Nanotechnology (ESciNano). 5-7 January. Johor Bahru, Malaysia: IEEE, 6149684.
Lintang, H. O., Kinbara, K., Tanaka, K., Yamashita, T., Aida, T. 2010a. Self‐repair of a one‐dimensional molecular assembly in mesoporous silica by a nanoscopic template effect. Angew. Chem. Int. Ed. 49, 4241-4245.
Lintang, H. O., Kinbara, K., Tanaka, K., Yamashita, T., Aida, T. 2012a. Metal-ion permeation in congested nanochannels: The exposure effect of Ag+ ions on the phosphorescent properties of a gold(I)–pyrazolate complex that is confined in the nanoscopic channels of mesoporous silica. Chem. Asian J. 2068-2072.
Lintang, H. O., Kinbara, K., Yamashita, T., Aida, T. 2010b. Heating effect of a one-dimensional molecular assembly on self-repairing capability in the nanoscopic channels of mesoporous silica. 2010 Proceedings of International Conferences on Enabling Science and Nanotechnology (ESciNano). 1-3 December. Kuala Lumpur, Malaysia: IEEE, 5700970.
Lintang, H. O., Yuliati, L., Endud, S. 2014. Phosphorescent sensing and imaging of temperature using mesoporous silica/gold nanocomposites. Mater. Res. Innov. 18, S6 444-448.
Liu, C. Y., Fechtenkötter, A., Watson, M. D., Müllen, K., Bard, A. J. 2003. Room temperature discotic liquid crystalline thin films of hexa-peri-hexabenzocoronene: Synthesis and optoelectronic properties. Chem. Mater. 15, 124-130.
Luo, J., Zhao, B., Shao, J., Lim, K. A., Chan, H. S. O., Chi, C. 2009. Room-temperature discotic liquid crystals based on oligothiophenes-attached and fused triazatruxenes. J. Mater. Chem. 19, 8327-8334.
Pavia, D. L., Engel, R. G., Kriz, G. S., Lampman, G. M. 2011. Introduction to organic laboratory techniques: A small scale approach. Belmont, CA: Brooks/Cole Cengage Learning, p. 237-258.
Pelletier, S. W., Chokshi, H. P., Desai, H. K. 1986. Separation of diterpenoid alkaloid mixtures using vacuum liquid chromatography. J. Nat. Prod. 49, 892-900.
Plato, C. 1972. Differential scanning calorimetry as a general method for determining purity and heat of fusion of high-purity organic chemicals: Application to 64 compounds. Anal. Chem. 44, 1531-1534.
Plato, C., Glasgow, A. R. Jr. 1969. Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals: Application to 95 compounds. Anal. Chem. 41, 330-336.
Sakurai, T., Tashiro, K., Honsho, Y., Saeki, A., Seki, S., Osuka, A., Muranaka, A., Uchiyama, M., Kim, J., Ha, S., Kato, K. 2011. Electron-or hole transporting nature selected by side-chain-directed -stacking geometry: Liquid crystalline fused metalloporphyrin dimers. J. Am. Chem. Soc. 133, 6537-6540.
Sato, K., Itoh, Y., Aida, T. 2011. Columnarly assembled liquid-crystalline peptidic macrocycles unidirectionally orientable over a large area by an electric field. J. Am. Chem. Soc. 133, 13767-13769.
Schmidbaur, H. 2000. The aurophilicity phenomenon: A decade of experimental findings, theoretical concepts and emerging applications. Gold Bull. 33, 3-10.
Sidana, J., Joshi, L. K. 2013. Recycle HPLC: A powerful tool for the purification of natural products. Chromatogr. Res. Int. 1-7.
Targett, N. M., Kilcoyne, J. P., Green, B. 1979. Vacuum liquid chromatography: An alternative to common chromatographic methods. J. Org. Chem.44, 4962-4964.
Torralba, M. C., Ovejero, P., Mayoral, M. J., Cano, M., Campo, J. A., Heras, J. V., Pinilla, E., Torres, M. R. 2004. Silver and gold trinuclear complexes based on 3‐substituted or 3,5‐disubstituted pyrazolato ligands. X‐ray crystal structure of cyclo‐tris{μ‐[3, 5‐bis(4‐phenoxyphenyl)‐1H‐pyrazolato‐kN1:kN2]}trigold dichloromethane ([Au(μ-pzpp2)]3-CH2Cl2). Helv. Chim. Acta 87, 250-263.
Trofimenko, S. 1972. Coordination chemistry of pyrazole-derived ligands. Chem. Rev. 72, 497-509.
van Herrikhuyzen, J., Syamakumari, A., Schenning, A. P., Meijer, E. W. 2004. Synthesis of n-type perylene bisimide derivatives and their orthogonal self-assembly with p-type oligo(p-phenylene vinylene)s. J. Am. Chem. Soc. 126, 10021-10027.
Vékey, K., Telekes, A., Vertes, A. Medical applications of mass spectrometry. Chapter 5: Separation methods. Elsevier 2008, p. 61-92.