Effect of initial bacteria cells number and fermentation time on increasing nutritive value of sago flour

Authors

  • Setiyo Gunawan Institut Teknologi Sepuluh Nopember (ITS) http://orcid.org/0000-0003-4864-4465
  • Hakun Wirawasista Aparamarta Institut Teknologi Sepuluh Nopember (ITS)
  • Ilham Muttaqin Zarkasie Institut Teknologi Sepuluh Nopember (ITS)
  • Wuwuh Wijang Prihandini Institut Teknologi Sepuluh Nopember (ITS)

DOI:

https://doi.org/10.11113/mjfas.v14n2.941

Keywords:

Fermentation, Lactobacillus plantarum, Metroxylon sago, Modified Sago flour

Abstract

Indonesia is the largest sago feedstock in the world. There are about 2 millions ha sago forest that approximately half of the world's sago forest is present in Indonesia. Naturally, sago spreads widely in Papua, while semi-cultivation is in Maluku, Sulawesi, Borneo, and Sumatra. The species sago (Metroxylon sago) was used in this study. It has a relatively high starch content (95.99%) with low amylose content (20.61%) and low protein content (1.63%). Modified sago flour is a product from sago flour that modified with fermentation to increase the nutritional value of the sago flour. It can be used as a gluten free flour and low-calorie food products. The bacteria (Lactobacillus plantarum) was used in the fermentation. However, the color of the modified sago flour is off-white, if the fermentation time is too long. Therefore, it is necessary to investigate the effect of fermentation time and initial bacteria cells number on increasing nutritive value of sago flour. The variables used were fermentation times (12, 24, and 36 h) and initial bacteria cells number (7 x 1010, 7 x 1011, 1.05 x 1012, and 3,05 1012 cells of L. plantarum). The result showed that amylose and protein content increased from 20.61% to 33,06% and from 1.41% to 4.11%, respectively, with bacterial variables of 3,5 x 1012 and fermentation time of 36 h.

References

Ahmad, F.B., Williams, P.A. 1998. Rheological properties of sago starch. J. Agric. Food Chem. 46, 4060-4065.

AOAC. Official methods of analysis of AOAC International. 2005. 17th edition. 2nd revision. Gaithersburg: Association of Analytical Communities.

Atrih, A., Rekhif, N., Milliere, J.B., Lefebvre, G. 1993. Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19. Can. J. Microbiol. 39, 1173–1179.

Chinwe, M.T., Chinyere, P.O., Felix, C.E. 2013. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds. Malaysian Journal of Microbiology. 9, 201-212

Flach, M., 1997, Sago palm. Metroxylon sagu Rottb. Promoting the conservation and use of underutilized and neglected crops, Institute of Plant Genetics and Crop Plant Research, Gatersleben / International Plant Genetic Resources Institute, Rome, Italy.

Ge´linas, P. and Barrette, J. 2011. Protein enrichment of potato processing waste through yeast fermentation. Journal of Bioresource Technology 98: 1138–1143

Gorinstein, S., Oates, C.G., Chang, S.M., Lii, C.Y. 1994. Enzymatic hydrolysis of sago starch. Food Chem 49, 411–417.

Gunawan, S., Istighfarah, Z., Aparamarta, H.W., Syarifah, F., Dwitasari, I. 2017. Utilization of modified cassava flour and its by-products, in Klein, C (ed) Handbook on Cassava, Nova Science Publiser, New York.

Gunawan, S., Widjaja, T., Zullaikah, S., Ernawati, L., Istianah, N., Aparamarta, H.W., Prasetyoko, D. 2015. Effect of fermenting cassava with Lactobacillus plantarum, Saccharomyces cerevisiae, and Rhizopus oryzae on the chemical composition of their flour. Int. Food Res. J. 22, 1280-1287.

Haska, N., Ohta, Y. 1993. Effect of cellulase addition on hydrolysis of sago starch granules by raw starch digesting amylase from Penicillium brunnuem no. 24 , Starch 45, 237 – 241.

Hu, C.C., Liu, L.Y. and Yang, S.S. 2012. Protein enrichment, cellulose production and in vitro digestion improvement of pangolagrass with solid state fermentation. Journal of Microbiology, Immunology and Infection 45, 7-14.

Kiers, J. L., Laeken, A.E.A.V., Rombouts, F.M., Nout, M.J.R. 2000. In vitro digestibility of bacillus fermented soy bean. Int. J. Food Microbiol. 60, 163-169.

Longhi, R.M., Domingues, F.N., Mota, D.A., Oaigen, R.P., Calonego, J.C., Zundt, M. 2013. Chemical composition and pH silage of different fractions of the aerial parts of the cassava plant treated with increasing doses of calcium oxide. Comunicata Scientiae. 4, 337-341.

McClatchey, W., Manner, H.I., Eleventh, C.R., 2006, Metroxylon amicarum, M. paulcoxii, M. sagu, M. salomonense, M. vitiense, and M. warburgii (sago palm), In: Elevitch, C.R. (ed.). Species Profiles for Pacific Island Agroforestry. Permanent Agriculture Resources (PAR), Hawaii.

Ni’maturohmah, E., Yunianta. 2015. Hydrolysis of sago (Metroxylon Sago Rottb.) starch by β-Amylase for making dextrin. Jurnal Pangan dan Agroindustri 3, 292-302.

Odusanya, O.S., Ishiaku, U.S., Azemi, B.M.N.M., Manan, D.M.A., Kammer, H.W. 2000. On mechanical properties of sago starch/poly (ε-caprolactone) composites. Polym. Eng. Sci. 40, 1298–305.

Peroni F.H.G, Rocha T.S., Franco C.M.L. 2006. Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International. 12, 505-51.

Pontoh, J., Low, N.H. 1995. Glucose syrup production from Indonesian palm and cassava starch. Food Res. Int. 28, 379-385.

Pranamuda, H., Lee, S.W., Ozawa, T., Tanaka, H. 1995. Ethanol production from raw sago starch under unsterile condition. Starch 47, 277–80.

Ratnam, B.V.V., Narasimha, R.M., Damodar, R.M., Subba, R.S., Ayyanna, C. 2003. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J. Microbiol. Biotechnol. 19, 523 – 526.

Ratnam, B.V.V., Somalanka, S.R., Mendu, D.R., Madicherla, N.R., Chityala, A. 2006. Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzyme Microbial. Technol. 38, 209–14.

Rauwerdink, J.B. 1986. An Essay on Metroxylon, the Sago Palm. Principes. 30, 165–180.

Sidaway, E.P., Balasingam, M. 1971. Keropok. In: Fish processing industry in West Malaysia. Malaysia: Food Technology Research and Development Centre.

Solichin, B.W. 1995. Sago starch as a substrate for cyclodextrin production. In: bandhu S, Sdoodee S, editors. Proceedings of the Fifth International Sago Leiden, The Netherlands: Int. Society of Horticultural Science. p 179–200.

Takahashi, S. 1986. Some useful properties of sago starch in cookery science. In: YamadaN, Kainuma K, editors. Sago-85: Proceedings of the Third International Sago Symposium. Ibaraki, Japan: The Sago Palm Research Fund. 208–16.

Tester, R.F., Morrison, W.R. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry, 67, 551-557.

Downloads

Published

03-06-2018