Effect of H2O/SiO2 Molar Ratio on Direct Synthesis of ZSM-5 from Bangka’s Kaolin Without Pretreatment
DOI:
https://doi.org/10.11113/mjfas.v13n4.916Keywords:
Kaolin, Direct synthesis, ZSM-5, Hydrothermal, ZeoliteAbstract
The influence of the molar ratio H2O/SiO2 in the synthesis directly from Bangka Belitung’s Kaolin has been studied by performing synthesis of ZSM-5 with a variation of the molar ratio H2O/SiO2 is different at 15, 25, 30, and 35. Weighing 3.980 g Bangka’s kaolin are added other material so obtained molar composition 10Na2O: 120SiO2: 2Al2O3: 1800-4200H2O, and 1% of silicalite seed, subsequent hydrothermal process of 175°C for 24 hours. The result of solids was analyzed by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) and SEM EDX to the analyzed morphology of ZSM-5 crystal. The synthesis of ZSM-5 was directly optimum with molar ratio H2O/SiO2 of 30 having the highest cristallinity and largest crystal size of 59.44% and 3.795 µm, respectively.
References
Abdmeziem, K., Siffert, B. 1994. Synthesis of large crystals of ZSM-5 zeolite from a smectite-type clay material. App. Clay Sci. 8, 437-447
Ali, M. A., Brisdon, B., Thomas, W.J. 2003. Synthesis, Characterization and Catalytic Activity of ZSM-5 Zeolites Having Variable Silicon-to-Aluminium Ratios. Applied Catalysis A: General 252, 149-162.
Chandrasekhar, S., Pramada, P.N., 2004. Kaolin-based Zeolite Y, a Precursor for Cordierite Ceramics. Applied Clay Science 27, 187-198
Cundy, C. S., Cox, P. A., 2003. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. J. Chemical Reviews : 103. 663-702.
Dey, P.K., Ghosh, S., Naskar, K.M., 2013. Organic Template- Free Synthesis of ZSM-5 Zeolite Particles using Rice Husk Ash as Silica Source. Ceramics International 39, 2153- 2157.
Dong, J.K., Hun, S. C. 2003. Synthesis and Characterization of ZSM-5 Zeolites from Serpentine Applied Clay Science 24, 60-77.
Hartanto, D., Yuan, L.S., Sari, S.M., Sugiarso, D., Murwani, I.K., Ersam, T., Nur, H., Prasetyoko, D., 2016, Can kaolin function as source of alumina in the synthesis of ZSM-5 without an organic template using a seeding technique?, Malaysian Journal of Fundamental and Applied Sciences 12 (2), 85-90
Hartanto, D., Saputro, O., Utomo, W.P., Rosyidah, A.,Sugiarso, D., Ersam, T., Nur, H., Prasetyoko, D., 2016, Synthesis of ZSM-5 directly from kaolin without organic template: Part-1: Effect of crystallization time, Asian Journal of Chemistry 28 (1), 211
Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J., 2004. Compositional and Kinetic Study on the Rapid Crystallization of ZSM-5 in the Absence of Organic Template Under Stirring. Microporous and Mesoporous 72, 185-192.
Kovo, A. S.; Hernandez, O.; Holmes, S. M., 2009. Synthesis and characterization of zeolite Y and ZSM-5 from Nigerian Ahoko Kaolin using a novel, lower temperature. Journal of Materials Chemistry Volume 19 issue 34 , 6207-6212
Pan, F, Lu, X., Wang, Y., Chen, S., Wang, T, Yan, Y., 2014. Organic template-free synthesis of ZSM-5 zeolite from coal-series kaolinite. Materials Letters 115, 5–8
Petushkov, A., Yoon, S., Larsen, C.S., 2011. Synthesis of Hierarchical Nanocrystalline ZSM-5 with Controlled Particle Size and Mesoporisity. Microporous and Mesoporous Materials 137, 92-100.
Prasetyoko, D., Ayunanda, N., Fansuri, H., Hartanto, D., Ramli, Z. 2012. Phase Transformation of Rice Husk Ash in The Synthesis of ZSM-5 without Organic Template. ITB Journal Science Vol. 44A No. 3 (2012) 250-262
Soraya, D., Iryani, A., Mulyati, A.H., 2012. Wastewater Treatment At PT.X By Active Sludge
Treacy, M.M.J., Higgins, J.B. 2001. Collection of Stimulated XRD Powder Patterns for Zeolites. Elsevier. Amsterdam
Wang, P., Shen, B., Shen, D., Peng, T., Gao, J. 2007. Synthesis of ZSM-5 Zeolite from Expanded Perlite/Kaolin and its Catalytic Performance for FCC Naphtha Aromatization. Catalysis Communications 8, 1452-1456.
Xue, T., Chen, T., Wang, Y.M., He, M.Y., 2012. Seed-induced Synthesis of Mesoporous ZSM-5 Aggregates Using Tetrapropylammonium hydroxide as Single Template. Microporous and Mesoporous Materials 156, 97-105.