Numerical modelling of blood cells distribution in flow through cerebral artery aneurysm
DOI:
https://doi.org/10.11113/mjfas.v14n1.915Keywords:
Aneurysm, CFD, wall shear stress, blood cellsAbstract
Recent aneurysm studies have focused on the correlation between different parameters and rupture risk; however, there have been conflicting findings. Computational fluid dynamics (CFD) allows for better visualization but idealized aneurysm models may neglect important variables such as aneurysm shape and blood flow conditions. In this paper, one case of an aneurysm was studied with CFD using a non-Newtonian Power Law Model to investigate the correlation between wall shear stress and blood cells distribution. Results show that velocity of blood flow decreased as it entered the aneurysm and the neck of the aneurysm experienced a greater magnitude of wall shear stress than the remainder of the cerebral artery. Besides, the blood cells generally begin at low velocities and increase after the first curve of the artery. Findings and further studies with larger cases of patients will improve treatment and prevention of aneurysm ruptures.
References
Can, A., Du, R. 2016. Association of hemodynamic factors with intracranial aneurysm formation and rupture, Neurosurgery, 78(4), 510-520.
Cebral, J., Castro, M., Appanaboyina, S., Putman, C., Millan, D., Frangi, A. 2005. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4), 457-467.
Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D., Frangi, A. F. 2005. [62]Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamies technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4), 457–467.
Cebral, J. R., Castro, M. a., Burgess, J. E., Pergolizzi, R. S., Sheridan, M. J., Putman, C. M. (2005). Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. American Journal of Neuroradiology, 26(10), 2550–2559.
Dhar, S., Tremmel, M., Mocco, J., Kim, M., Yamamoto, J., Siddiqui, A., Hopkins, L., Meng, H. 2008. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery, 63(2), 185-197.
Goubergrits, L., Schaller, J., Kertzscher, U., van den Bruck, N., Poethkow, K., Petz, C., Hege, H., Spuler, A. 2011. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of the Royal Society Interface, 9(69), 677-688.
Goubergrits, L., Schaller, J., Kertzscher, U., van den Bruck, N., Poethkow, K., Petz, C., … Spuler, A. (2012). Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. Journal of The Royal Society Interface, 9(69), 677–688.
Jiang, Y., Lan, Q., Wang, Q., Lu, H., Ge, F., Wang, Y. 2014. Correlation between the rupture risk and 3D geometric parameters of saccular intracranial aneurysms. Cell Biochemistry and Biophysics, 70(2), 1417-1420.
Munarriz, P. M., Gómez, P. A., Paredes, I., Castaño-Leon, A. M., Cepeda, S., Lagares, A. (2016). Basic Principles of Hemodynamics and Cerebral Aneurysms. World Neurosurgery, 88, 311–319.
Munarriz, P. M., Gómez, P. A., Paredes, I., Castaño-Leon, A. M., Cepeda, S. Lagares, A. 2016. Basic principles of hemodynamics and cerebral aneurysms. World Neurosurgery, 88, 311-319.
Nur, H., Hayati, F., Hamdan, H. 2007. On the location of different titanium sites in Ti-OMS-2 and their catalytic role in oxidation of styrene. Catalysis Communications, 8, 2007-2011.
Nur, H., Guan, L. C., Endud, S., Hamdan, H. 2004. Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Materials Letters, 58(12-13), 1971-1974.
Papaioannou, T. G., Stefanadis, C. (2005). Vascular wall shear stress: basic principles and methods. Hellenic Journal of Cardiology, 46(1), 9–15.
Xiang, J., Natarajan, S., Tremmel, M., Ma, D., Mocco, J., Hopkins, L., Siddiqui, A., Levy, E., Meng, H. 2010. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42(1), 144-152.
Xiang, J., Natarajan, S. K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L. N., … Meng, H. (2011). Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke, 42(1), 144–152.