Activation of zeolite-Y templated carbon with KOH to enhance the CO2 adsorption capacity

Nurul Widiastuti, Indri Susanti

Abstract


This research was aimed to activate zeolite-Y templated carbon (ZTC-Y) with potassium hydroxide (KOH) at variation weight ratios of KOH(g)/KTZ-Y(g) at 0.5, 1, 1.5 and 2, in order to enhance the carbon dioxide (CO2) adsorption capacity on the material. ZTC-Y was synthesized via impregnation method by carbonization. The activation was performed by heating of impregnated ZTC-Y with KOH at 800°C for 1 hour, followed by acid washing to remove inorganic salt. ZTC-Y before and after activation were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Brunauer–Emmett–Teller (BET) methods. The surface area and average pore size of activated ZTC-Y were 557.41 m2/g and 2.36 nm, respectively. The CO2 adsorption capacity was determined by gravimetric method. The result showed that activation of ZTC-Y with KOH could increase CO2 adsorption capacity on ZTC-Y. CO2 adsorption capacity was enhanced from 1.07% (wt) to 2.72% (wt) for ZTC-Y after activation with KOH at weight ratio of KOH(g)/ ZTC-Y(g) 1.5.

Keywords


Zeolite-Y templated carbon, activation, KOH, CO2 adsorption capacity

Full Text:

PDF

References


Abechi, S.E., Gimba C.E., Uzairu A., Dallatu, Y.A., 2013. Preparation and characterization of activated carbon from palm karnel shell by chemical activation. Research Journal of Chemical Science, 3(7), 54-61.

Alam, N. and Mokaya, R., 2011. Characterization and hydrogen storage of Pt-doped carbons templated by Ptex changed zeolite Y. Journal of Microporous and Mesoporous Materials, 142, 716-724.

Albo, A., Luis, P. and Irabin, A., 2010. Carbon dioxide capture from flue gases using a cross-flow membrane contactor and the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. Industry & Engineering Chemistry Research, 49(21), 11045–11051.

Anggarini U., 2013. Sintesis dan karakterisasi karbon tertemplat zeolit-Y dengan aktivasi K2CO3 sebagai material penyimpan hidrogen. Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Apriani, R., Faryuni, I.D., dan Wahyuni, D., 2013. Pengaruh konsentrasi aktivator kalium hidroksida (KOH) terhadap kualitas karbon aktif kulit durian sebagai adsorben logam Fe pada air gambut. Prisma Fisika, 1(2), 82-86.

Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R., 2008. Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials, 9(1), 013007.

Chen L., Singh R. K. and WebleyP., 2007. Synthesis, characterization and hydrogen storage propertiesof 38 microporouscarbons template by cation exchanged forms ofzeolite Y with propylene and butylene ascarbon precursors. Microporous and Mesoporous Materials, 102(1-3), 159–170.

Chung K.-H., 2010. High-pressure hydrogen storageon microporouszeolites with varyingpore properties. Energy, 35(5), 2235–2241.

Deng H., Yi H., Tang X., Yu Q., Ning P. and Yang L., 2012. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolite. Chemical Engineering Journal, 188, 77–85.

Figueroa J. D., Fout T., Plasynski S., McIlvried H. dan Srivastava R. D., 2008. Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2(1), 9–20.

Guan C., Wang K., Yang C., Zhao X.S., 2009. Characterization of a zeolite-templated carbon for H2 storage application. Journal of Microporous and Mesoporous Materials, 118(1-3), 503-507.

Gunawan, T., 2015. Adsorption-Desorption of CO2 on zeolite templated carbon at various temperature. Final Project, Institut Teknologi Sepuluh Nopember Surabaya.

Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linder, P.J., Dai, X., Maskell, K., and Johnson, C.A., 2001. Climate change. United Kingdom and New York, U.S.A.: Scientific Basic, Cambridge University Press.

Im, J. S., Park, S. J., Kim, T. J., Kim, Y. H., Lee, Y. S. 2008. The study of controlling pore size on electrospun carbon nanofibers for hydrogen storage. Journal of Colloid and Interface Science, 318(1), 42–49.

Ioannidou, O., Zabaniotou, A., 2007. Agricultural residues as precursors for activated carbon production - A review. Renewable and Sustainable Energy Reviews, 11(9), 1966–2005.

Kayadoe, V., 2013. Synthesis and characterization of zeolite-Y templated carbon with sucrose as as carbon precursor for hydrogen storage material, Thesis, Institut Teknologi Sepuluh Nopember, Surabaya.

Kelut P., Kulkarni K., Kulkarni A.D., 2014. CO2 Adsorption by various catalysts. Chemical and Process Engineering Research, 18, 7-15.

Li J.-R., Ma Y., McCarthy M. C., Sculley J., Yu J., Jeong H.-K., Balbuena P. B. dan Zhou H.-C. 2011. Carbon dioxide capture-related gas adsorption dan separation in metal-organic frameworks. Coordination Chemistry Reviews, 255, 1791–1823.

Pinero E.R., Azais P., Cacciaguerra T., Amoros D.C., Solano, A.L., Beguin F., 2005. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon. 43(4). 786-795.

McKee, Douglas W., 1983. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel, 62, 170–175.

Mopoung S., Moonsri P., Palas, W., Khumpai, S. 2015. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution. The scientific world journal, 2015, 1-9.

Nishihara H., Yang Q-H., Hou P. X., Unno M., Yamauchi S., Saito, R., Paredes J. I., M-Alonso A., Tascon J. M. D., Sato Y., Terauchi M., Kyotani T., 2009. A possible buckybowl-like structure of zeolite templated carbon. Carbon, 47(5), 1220-1230.

Ramm, Louise E., Michael B. Whitlow, and Manfred M. Mayer. 1982. Trans membrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel. Proceedings of the National Academy of Sciences, 79(15), 4751-4755.

Sevilla, M., Alam, N., Mokaya, R. 2010. Enhancement of hydrogen storage capacity of zeolite-templated carbons by chemical activation. Journal of Physical Chemistry, 114(25), 11314 – 11319.

Siriwardane, R., Shen, M., Fisher, E., Poston, J., Shamsi, A.. 2001. Adsorption dan desorption of CO2 on solid sorbents. Journal of Energy & Environmental Research,1, 19–22.

Su F., Zhao X. S., Lv.Lu. and Zhou Z. 2004. Synthesis and characterization of microporous carbons templated by ammonium-form zeolite Y. Carbon, 42(14), 2821–2831.

Viswanathan, B, Neel, P. Indra, Varadarajan, T.K., 2009. Methods of activation and specific applications of carbon materials. Chennai, India: National Center for Catalysis Research, Indian Institute of Technology Madras.

Weitkamp, J. 2000. Zeolites and Catalysis. Solid State Ionics, 131(1-2), 175-188.

Yang, Z., Xia, Y., Sun, X., Mokaya, R., 2006. Preparation and hydrogen properties of zeolite templated carbon materials nanocast via chemical vapor deposition: Effect of the zeolite templated and nitrogen doping. Journal of Physical Chemistry, 110(37), 18424 – 18431.

Z.J. Zhang, W. Zhang, X. Chen, Q.B. Xia, Z. Li, 2010. Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area. Separation Science and Technology, 45, 710–719.




DOI: https://doi.org/10.11113/mjfas.v15n2.914

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Nurul Widiastuti, Indri Susanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright © 2005-2019 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website.