Simulation of AH flows and deformation of DMD in a 3D AC

Authors

  • Zuhaila Ismail Universiti Teknologi Malaysia
  • Lim Yeou Jiann Universiti Teknologi Malaysia
  • Sabaruddin Ahmad Jamali Universiti Teknologi Malaysia
  • Alistair Fitt Oxford Brookes University Headington Campus

DOI:

https://doi.org/10.11113/mjfas.v13n4-1.898

Keywords:

Aqueous Humour, Descemet Membrane Detachment, Arbitrary Lagrangian Eulerian

Abstract

This paper presents the interaction between the aqueous humour (AH) flows and the deformation of Descemet membrane detachment (DMD) in a 3D anterior chamber (AC). Arbitrary Lagrangian Eulerian (ALE) method is used to model the problem. Finite element method using COMSOL Multiphysics software is adopted to solve the governing equations for the AH flows and the deformation of DMD. The fluid flow behaviour and the deformation of the detached Descemet membrane are analysed in order to comprehend the progression of the DMD in the AC due to the AH flows and vice versa. The re-attachment or re-detachment of the DMD is significantly affected by the AH flows. Advance treatment for the DMD can be developed based on a better understanding of the interaction between the AH flows and the DMD.

References

Anjos, G. R., Borhani, I. N., Mangiavacchi, N., and Thome, J. R. (2014). A 3D moving mesh Finite Element Method for two-phase flows. Journal of Computational Physics 270:366-377.

Batchelor, G. K. (2000). An Introduction to Fluid Dynamics. New York: Cambridge University Press.

Braescu, L., and George, T. F. (2007). Arbitrary Lagrangian-

Eulerian method for coupled Navier-Stokes and convection-diffusion equations with moving boundaries. 12th WSEAS International Conferences on Applied Mathematics. Location,

Canning, C. R., Greaney, M. J., Dewynne, J. N., and Fitt, A. D. (2002). Fluid flow in the anterior chamber of a human eye. IMA Journal of Mathematics Applied in Medicine and Biology. 19:31-60.

Couch, S. M., and Baratz, K. H. (2009). Delayed, Bilateral Descemet's Membrane Detachments with Spontaneous Resolution: Implications for Nonsurgical Treatment. Cornea

:1160-1163.

Ismail, Z., Fitt, A. D., and Please, C. P. (2013). A fluid mechanical explanation of the spontaneous reattachment of a previously detached Desecement membrance. Mathematical Medicine and Biology 30:339-355.

Jafari, R., and Okutucu-Özyurt, T. (2016). 3D numerical modeling of boiling in a microchannel by arbitrary Lagrangian–Eulerian (ALE) method. Applied Mathematics and Computation 272:593-603.

Jaluria, Y. (1980). Natural Convection Heat and Mass Transfer. London: Pergamon Press.

Karimi, A., Razaghi, R., Navidbakhsh, M., Sera, T., and Kudo, S. (2016a). Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model. Technology and Health Care 1:1-13.

Karimi, A., Razaghi, R., Navidbakhsh, M., Sera, T., and Kudo, S. (2016b). Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid–structure interaction model. Injury 47:1041-1050.

Karimi, A., Razaghi, R., Navidbakhsh, M., Sera, T., and Kudo, S. (2016c). Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model. Sports Engineering 19:105-115.

Kjellgren, P., and Hyva Èrinen, J. (1998). An Arbitrary Lagrangian-Eulerian finite element method. Computational Mechanics 21:81-90.

Kuhl, E., Hulsho, S., and de Borst, R. (2003). An arbitrary Lagrangian Eulerian finite-element approach for fluid–structure interaction phenomena. International Journal For Numerical Methods In Engineering 57:117-142.

Kundu, P. K., Cohen, I. M., and Dowling, D. R. (2012). Fluid Mechanics. USA: Academic Press.

Lewis, R. W., Nithiarasu, P., and Seetharamu, K. (2008). Fundamentals of the Finite Element Method for Heat and Fluid Flow: Wiley.

Lo, D. C., and Young, D. L. (2004). Arbitrary Lagrangian–Eulerian finite element analysis of free surface flow using a velocity–vorticity formulation. Journal of Computational Physics 195:175-201.

Marcon, A. S., Rapuano, C. J., Jones, M. R., Laibson, P. R., and Cohen, E. J. (2002). Descemet’s membrane detachment after cataract surgery: management and outcome. Ophthalmology 109 (12):2325-2330.

Mulhern, M., Barry, P., and Condon, P. (1996). A case of Descemet's membrane detachment during phacoemulsification surgery. Br J Ophthalmol. 80 (2):185-186.

Nouri, M., Pineda, R. J., and Azar, D. (2002). Descemet membrane tear after cataract surgery. Seminars in Ophthalmology 17:115-119.

Potter, J., and Zalatimo, N. (2005). Descemet’s membrane detachment after cataract extraction. Optometry (St. Louis, Mo.) 76 (12):720-724.

Reddy, J. N., and Gartling, D. K. (2010). The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition. USA: Taylor & Francis.

Sevillano, C., Viso, E., and Millan-Rodriguez, A. C. (2008). Descemet’s membrane detachment as a complication of cataract surgery. Archivos de la Sociedad Espaola de Oftalmologa. 83:549-552.

Ünlü, K., and Aksünger, A. (2000). Descemet membrane detachment after viscocanalostomy. American Journal of Ophthalmology 130 (6):833-834.

Ventsel, S., and Krauthammer, T. (2001). Thin Plate and Shells: Theory, Analysis and Application. New York: CRC Press.

Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P. (2013). The Finite Element Method for Fluid Dynamics. USA: Elsevier Science.

Downloads

Published

05-12-2017