Evaluation of environmental natural radioactivity levels in soil and ground water of Barkin Ladi, Plateau state, Nigeria

Authors

  • Habu Tela Abba Universiti Teknologi Malaysia
  • Wan Muhammad Saridan Wan Hassan Universiti Teknologi Malaysia
  • Muneer Aziz saleh Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v14n3.882

Keywords:

Radioactivity, 226Ra, 232Th and 40K, geological unit, ICP-MS, Barkin Ladi.

Abstract

Gamma spectrometry was used to measure gamma dose rate in air and to determine the activity concentration of naturally occurring radionuclides viz. 226Ra 232Th and 40K in soil samples collected across the geological formations of Barkin Ladi. Dose rates measured in-situ ranged from 5 nGy h−1 to 1265 nGy h−1 with a mean value of 325 nGy h−1. The activity concentrations of 226Ra ranged from 27 to 327 Bq kg−1, 34 to 457 Bq kg−1 for 232Th and 43 to 1055 Bq kg−1 for 40K. Their mean values are significantly higher than their corresponding global average values. Annual effective dose due to exposure to gamma dose is calculated at 0.34 mSv y−1. Mass concentrations of uranium (238U) and thorium (232Th) determined in groundwater samples using Inductive Coupled Plasma Mass Spectrometry (ICP-MS) ranged from 2.5 to 35 µg l−1 for 238U and 0.5 to 15 µg l−1 for 232Th. Ingestion effective dose varies between 10.5 and 142 mSv y−1 for 238U and between 0.34 and 10.2 mSv y−1 for 232Th. Mass concentration of three water samples exceed the toxicity limit of U in groundwater provided by WHO. The result revealed that human risk due to ingestion of groundwater is from chemical toxicity rather than radiological effects.  The results of this work will be useful for radio-geochemical investigation and groundwater resources management.

Author Biographies

Habu Tela Abba, Universiti Teknologi Malaysia

Department of Physics, Faculty of Science

Wan Muhammad Saridan Wan Hassan, Universiti Teknologi Malaysia

Physics department

Muneer Aziz saleh, Universiti Teknologi Malaysia

Nuclear programme

References

Abba, H., Saleh, M., Hassan, W., Aliyu, A. and Ramli, A. (2017). Mapping of natural gamma radiation (NGR) dose rate distribution in tin mining areas of Jos Plateau, Nigeria. Environmental Earth Sciences, 76(5), 208.

Abba, H. T., Hassan, W. M. S. W., Saleh, M. A., Aliyu, A. S. and Ramli, A. T. (2017). Estimation of Terrestrial gamma radiation (TGR) dose rate in characteristic geological formations of Jos Plateau, Nigeria. Malaysian Journal of Fundamental and Applied Sciences, 13(4), 593-597.

Abba, H. T., Hassan, W. M. S. W., Saleh, M. A., Aliyu, A. S. and Ramli, A. T. (2017c). Terrestrial gamma radiation dose (TGRD) levels in northern zone of Jos Plateau, Nigeria: Statistical relationship between dose rates and geological formations. Radiation Physics and Chemistry, 140, 167-172

Ademola, J. and Farai, I. (2006). Gamma activity and radiation dose in concrete building blocks used for construction of dwellings in Jos, Nigeria. Radiation protection dosimetry,121(4), 395-398.

Aieta, E. M., Singley, J. E., Trussell, A. R., Thorbjarnarson, K. W. and McGuire, M. J. (1987). Radionuclides in drinking water: An overview. American Water Works Association Journal, 79, 144-152.

Arogunjo, A. M., llriegl, V. H., Giussani, A., Leopold, K., Gerstmann, U., Veronese, I. and Oehb, U. (2009). Uranium and thorium in soils mineral sands water and food samples in a tin mining area in Nigeria with elevated activity. Journal of Environmental Radioactivity, 100(3), 232-240.

Babalola, I. (1984). Radiation measurement and assay of tailing from high natural radioactivity in Plateau State. Nigerian Journal of Science. 18, 98-101.

Hewson, G. (1996). Overview of radiation safety in the tin by-product (amang) industry of South East Asia. Health physics. 71(2), 225-234.

International Atomic Energy Agency (1989). Construction and use of calibration Facilities for radiometric field equipment. Technical Reports Series no.309, Vienna: IAEA.

Isinkaye, M. (2013). Natural radioactivity levels and the radiological health implications of tailing enriched soil and sediment samples around two mining sites in Southwest Nigeria. Radiation Protection and Environment. 36(3), 122-127.

Jibiri, N. (2001). Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria. Environment International. 27(1), 21-26.

Jibiri, N. and Farai, I. (1998). Assessment of dose rate and collective effective dose equivalent due to terrestrial gamma radiation in the city of Lagos, Nigeria. Radiation Protection Dosimetry. 76(3), 191-194.

Karahan G., Ozturk N. and Ahmet B. (2000). Natural Radioactivity in various surface waters in Istanbul, Turkey. Water Resources, 24, 4367 – 4370.

Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42(6), 547-569.

Macleod, W. N., Turner, D. C. and Wright, E. P. (1971). The Geology of Jos Plateau. Bulletin Geological Survey of Nigeria, 32(1), 12-47.

Mangset, W., Ike, E., Christopher, L., Solomon, A. and Mallam, S. (2014). Evaluation of the radiation hazard indices and excess life time cancer risk due to natural radioactivity in ground water in mining areas of plateau state. International Journal of Engineering, 5(05), 9-23.

Michel, J. (1991). Relationship of radium and radon with geological formations. In: Richard Cothern, C., Rebers, P.A. (Eds.). Radon, Radium and Uranium in Drinking Water, Second Ed. USA: Lewis Publishers, 83e96.

NPC (2006). National population Commission (NPC): Provisional of 2006 CensusResults.Retrieved From https://www.jstor.org/stable/25434601?seq=1#page_scan_tab_contents.

Obed, R., Farai, I. and Jibiri, N. (2005). Population dose distribution due to soil radioactivity concentration levels in 18 cities across Nigeria. Journal of Radiological Protection, 25(3), 305-312.

Olise, F. S., Oladejo, O. F., Almeida, S. M., Owoade, O. K., Olaniyi, H. B. and Freitas, M. C. (2014). Instrumental neutron activation analyses of uranium and thorium in samples from tin mining and processing sites. Journal of Geochemical Exploration, 142, 36-42.

Oresegun, M. and Babalola, A. (1990). Occupational radiation exposure associated with milling of Th-U-rich Sn ore in Nigeria. Health Physics. 58(2), 213-215.

Oresegun, M. and Babalola, I. (1993). The environmental gamma radiation level of Jos, Nigeria. Nigerian Journal of Science, 27, 263-268.

Pujol Li. and Sanechez-Cebeza, J. A. (2000). Natural and and artificial radioactivity in surface waters of the Ebro River Basin (Northeast Spain). Journal of Environment Radioactivity, 51,181 – 210.

Ramli, A. T., Hussein, A. W. M. and Lee, M. (2001). Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore. Applied Radiation and Isotopes, 54(2), 327-333.

Saleh, M. A., Ramli, A. T., Alajerami, Y., Aliyu, A. S. and Basri, N. A. B. (2013a). Radiological study of Mersing District, Johor, Malaysia. Radiation Physics and Chemistry, 85, 107-117.

Saleh, M. A., Ramli, A. T., Bin Hamzah, K., Alajerami, Y., Mhareb, M. H. A., Aliyu, A. S. and Hanifah, N. Z. H. B. A. (2015). Natural environmental radioactivity and the corresponding health risk in Johor Bahru District, Johor, Malaysia. Journal of Radioanalytical and Nuclear Chemistry, 303(3), 1753-1761.

Sanni, A., James, D. and Schweikert, E. (1985). Radioactivity of the by-products of tin mining in Nigeria. Nigerian Journal of Science. 20, 115-120

UNSCEAR (2000). Sources, Effects and Rsik of Ionizing Radiation. United Nation Scientific Commitee on the Effect of Atomic RadiationNew York; United Nations.

United Nations Scientific Committee on the Effects Atomic Radiation (2000). Sources and effects of ionizing radiation. Report to the General Assembly with Scientific Annexes. New York: United Nations.

US Environmental Protection Agency (2008). Groundwater and Drinking water. US Drinking water Division Retrieved from. 〈http://water.epa.gov/drink/〉.

World. Health Organization (2003). Guidelines for Drinking-Water Quality Health Cretirea and other supporting information. 2nd edition, vol. 2; pp. 367-370.

Zapecza, O. S. and Szabo, Z. (1986). Natural radioactivity in ground water - A review. US Geological Survey National Water Summary, 50-57.

Downloads

Published

03-09-2018