Some numerical methods for solving geodesic active contour model on image segmentation process

Authors

  • Maizatul Nadirah Mustaffa Universiti Teknologi Malaysia
  • Norma Alias Universiti Teknologi Malaysia
  • Faridah Mustapha Universiti Teknologi Malaysia

DOI:

https://doi.org/10.11113/mjfas.v13n4-1.849

Keywords:

Image Segmentation, Color, Geodesic Active Contour, Numerical Methods

Abstract

In this paper, we present an edge-based image segmentation technique using modified geodesic active contour model to detect the desired objects from an image. The stopping function of the proposed model has been modified from the usual geodesic active contour model. The modified geodesic active contour model is discretized using finite difference method based on the central difference formula. Then, some numerical methods such as RBGS and Jacobi methods are used for solving the linear system of equation. The accuracy and effectiveness of the proposed algorithm have been illustrated by applied to different images and some numerical methods.

References

Ling, P., Chaomin, S., Fang, L., Jinsong, Fan. 2007. A variational formulation for segmenting desired objects in color images. Image and Vision Computing. 25(9), Issue 9, 1414-1421.

Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M. 2001. Fast geodesic active contours. IEEE Transactions Image Processing. 10, 1467–1475.

Caselles, V., Kimmel, R., and Sapiro, G. 1997. Geodesic active contour. International Journal of Computer Vision. 22(1), 61-79.

Alias, N., Mustaffa, M. N., Md. Zubaidin, Z., Saipol, H. F., Che Abd. Ghani, A. 2014. The chronology of geographic information system image processing: A case study for land changes at Nusajaya, Iskandar Malaysia. Advanced Science Letters. 20(2), 435-438(4).

Md. Zubaidin, Z. 2013. Alternating group explicit method for edge detection on brain and breast tumuor images. Thesis Master of Science. Universiti Teknologi Malaysia, Skudai.

Weickert, J., ter Haar Romeny, B. M., and Viergever, M. A. 1998. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing. 7(3), 398-410.

Kuhne, G., Weickert, J., Beir, M., and Effelsberg, W. 2002. Fast implicit active contour models. Proceedings of the 24th DAGM Symposium on Pattern Recognition. 16-18 September 2002. Zurich, Switzerland: Springer-Verlag, 133-140.

Che Rahim, C. T. 2009. Numerical Method: Algorithm and Matlab Programming. Third Edition. Universiti Teknologi Malaysia, Johor.

Downloads

Published

05-12-2017