Spatial grouping of homogeneous river flow process in Johor

Nur Syazwin Mansor, Norhaiza Ahmad

Abstract


This study identifies the spatial grouping of homogeneous river flow process on eight rivers in Johor based on river discharge records of 28 years. A clustering approach using a nonlinear dissimilarity measure called Dynamic Time Warping (DTW) is used to detect the similarity between these eight rivers. The clustering results validated by an internal validity measure, C-index shows two distinct groups of rivers: Cluster 1 consist of Sungai Lenik, Sungai Segamat, Sungai Bekok, and Sungai Muar; Cluster 2 consist of Sungai Sayong, Sungai Lenggor, Sungai Johor, and Sungai Kahang. This two-cluster solution are stable and interpretable with reference to spatial variations and can be distinguish by their geographical location in the peninsular.


Keywords


Spatial grouping, Clustering, Dissimilarity measure

Full Text:

PDF

References


Dikbas, F., Firat, M., Koc, A. C., & Gungor, M. (2013). Defining homogeneous regions for streamflow processes in Turkey using a K-means clustering method. Arabian Journal for Science and Engineering, 38(6), 1313-1319.

Isik, S., & Singh, V. P. (2008). Hydrologic regionalization of watersheds in Turkey. Journal of Hydrologic Engineering, 13(9), 824-834.

Kahya, E., Kalaycı, S., & Piechota, T. C. (2008). Streamflow regionalization: case study of Turkey. Journal of Hydrologic Engineering, 13(4), 205-214.

Mediero, L., Kjeldsen, T. R., Macdonald, N., Kohnova, S., Merz, B., Vorogushyn, S., Wilson, D., Alburquerque, T., Blöschl, G., Bogdanowicz, E., Castellarin, A., Hall, J., Kobold, M., Kriauciuniene, J., Lang, M., Madsen, H., Onuşluel Gül, G., Perdigão, R.A.P., Roald, L.A., Salinas, J.L., Toumazis, A.D., Veijalainen, N., & Óðinn Þórarinsson. (2015). Identification of coherent flood regions across Europe by using the longest streamflow records. Journal of Hydrology, 528, 341-360.

Mishra, S., Saravanan, C., Dwivedi, V. K., & Pathak, K. K. (2015). Discovering flood rising pattern in hydrological time series data mining during the pre monsoon period. Computer Applications, 44(March), 35–44.

Razaqa, S. A., Ismailb, T., Heryansyahb, A., Lawanb, U. F., Alamgirb, M., & Pourb, S. H. (2016). Streamflow Prediction in Ungauged Catchments in the East Coast of Peninsular Malaysia Using Multivariate Statistical Techniques. Jurnal Teknologi, 78(6-12), 43-49.

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., & Carrillo, G. (2011). Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences, 15(9), 2895.

Wang, W., Vrijling, J. K., Van Gelder, P. H., & Ma, J. (2006). Testing for nonlinearity of streamflow processes at different timescales. Journal of Hydrology, 322(1), 247-268.




DOI: https://doi.org/10.11113/mjfas.v13n4-1.845

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Nur Syazwin Mansor, Norhaiza Ahmad

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Copyright © 2005-2020 Penerbit UTM Press, Universiti Teknologi Malaysia. Disclaimer: This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this website.